【题目】(2016湖北襄阳第23题)
襄阳市某企业积极响应政府“创新发展”的号召,研发了一种新产品.已知研发、生产这种产品的成本为30元/件,且年销售量y(万件)关于售价x(元/件)的函数解析式为:
(1)若企业销售该产品获得自睥利润为W(万元),请直接写出年利润W(万元)关于售价(元/件)的函数解析式;
(2)当该产品的售价x(元/件)为多少时,企业销售该产品获得的年利润最大?最大年利润是多少?
(3)若企业销售该产品的年利澜不少于750万元,试确定该产品的售价x(元/件)的取值范围.
【答案】(1)(2)当该产品的售价定为50元/件时,销售该产品的年利润最大,最大利润为800万元.(3)要使企业销售该产品的年利润不少于750万元,该产品的销售价x(元/件)的取值范围为45≤x≤55.
【解析】
试题分析:(1)根据“年利润=年销售量×每件产品的利润(每件产品的售价-每件产品的进价)”直接列出式子,化简即可;(2)根据二次函数的性质,分别计算出两种情况的最大值,比较即可得结论;(3)先由(2)的结论,排除第二种情况,再根据二次函数的性质,由第一种情况确定x的取值范围.
试题解析:(1)
(2)由(1)知,当540≤x<60时,W=-2(x-50)2+800.
∵-2<0,,∴当x=50时。W有最大值800.
当60≤x≤70时,W=-(x-55)2+625.
∵-1<0, ∴当60≤x≤70时,W随x的增大而减小。
∴当x=60时,W有最大值600.
∴当该产品的售价定为50元/件时,销售该产品的年利润最大,最大利润为800万元.
(3)当40≤x<60时,令W=750,得
-2(x-50)2+800=750,解之,得
由函数W=-2(x-50)2+800的性质可知,
当45≤x≤55时,W≥750.
当60≤x≤70时,W最大值为600<750.
所以,要使企业销售该产品的年利润不少于750万元,该产品的销售价x(元/件)的取值范围为45≤x≤55.
科目:初中数学 来源: 题型:
【题目】如图,直线与x轴、轴分别相交于点C、B,与直线相交于
点A.
(1)点B、点C和点A的坐标分别是(0, )、( ,0)、( , );
(2)求两条直线与轴围成的三角形的面积;
(3)在坐标轴上是否存在一点Q,使△OAQ的面积等于6,若存在请直接写出Q点的坐标,若不存在,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】下列方程中变形正确的是( )
①3x+6=0变形为x+2=0;
②2x+8=5-3x变形为x=3;
③+=4去分母,得3x+2x=24;
④(x+2)-2(x-1)=0去括号,得x+2-2x-2=0.
A. ①③ B. ①②③ C. ①④ D. ①③④
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】李先生在2015年11月第2周星期五股市收盘时,以每股9元的价格买进某公司的股票1000股,在11月第3周的星期一至星期五,该股票每天收盘时每股的涨跌(单位:元)情况如下表:
注:表中记录的数据为每天收盘价格与前一天收盘价格的变化量,星期一的数据是与上星期五收盘价格的变化量.
(1)请你判断在11月的第3周内,该股票价格收盘时,价格最高的是哪一天?
(2)在11月第3周内,求李先生购买的股票每股每天平均的收盘价格.(结果精确到百分位)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】(2016贵州省毕节市第23题)为进一步发展基础教育,自2014年以来,某县加大了教育经费的投入,2014年该县投入教育经费6000万元。2016年投入教育经费8640万元。假设该县这两年投入教育经费的年平均增长率相同。
(1)、求这两年该县投入教育经费的年平均增长率;
(2)、若该县教育经费的投入还将保持相同的年平均增长率,请你预算2017年该县投入教育经费多少万元。
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】方程■x﹣2y=x+5是二元一次方程,■是被弄污的x的系数,请你推断■的值属于下列情况中的( )
A.不可能是﹣1
B.不可能是﹣2
C.不可能是1
D.不可能是2
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com