精英家教网 > 初中数学 > 题目详情
如图,DE∥BC,AD:DB=2:3,则△AED和△ABC的相似比为
 
考点:相似三角形的判定与性质
专题:
分析:由AD:DB=2:3,设AD=2x,BD=3x,就可以得出AB=5x,由DE∥BC就可以得出△AED∽△ABC就可以得出结论.
解答:解:∵AD:DB=2:3,设AD=2x,BD=3x,
∴AB=5x.
∵DE∥BC,
∴△AED∽△ABC,
AD
AB
=
2
5

故答案为:
2
5
点评:本题考查了比例的运用,相似三角形的判定及性质的运用,解答时证明三角形的相似是关键.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

如图,平行四边形ABCD中,E为AD的中点,已知△DEF的面积为S,则△BCF的面积为(  )
A、SB、2SC、3SD、4S

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,一张直角三角形硬纸片ABC,∠B=90°,AB=5,AC=13,将纸片顶点B放在半径为2.4的⊙O上,并使BC经过圆心O,在⊙O不动的情况下,将纸片绕着B按顺时针方向旋转.
(1)当旋转角的度数等于∠A的度数时,得到△A1BC1,问直线A1C1与⊙O有怎样的位置关系?为什么?
(2)在(1)的状态下,再继续旋转∠C的度数,得到△A2BC2,那么A2C2与⊙O的位置关系是否发生变化?通过计算或推理说明你的理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,△ABC是⊙O的内接三角形,AE是⊙O的直径,AF是⊙O的弦,且AF⊥BC于D点.求证:
(1)△ADC∽△ABE; 
(2)BE=CF.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知直线y=-x+1交x,y轴于A,B两点,反比例函数y=
k
x
在第一象限内的图象上有点P,连AP,BP且四边形OAPB是正方形.
①求反比例函数的解析式;
②若动点P在双曲线上运动,作PM⊥x轴交AB于E点;PN⊥y轴交AB于F点.以下有两个结论:AF与BE的积不变,AF与BE的商不变,其中有一个是正确的,请选出正确的结论,并加以证明.

查看答案和解析>>

科目:初中数学 来源: 题型:

“十一”黄金周期间,刘公岛景区在7天假期中每天接待的旅游人数变化情况如表(正数表示比前一天多的人数,负数表示比前一天少的人数):
日期1日2日3日4日5日6日7日
人数变化单位:万人+1.6+0.8+0.4-0.4-0.6+0.2-1.2
(1)若9月30日的游客人数为5万人,则10月2日的游客人数是
 
万人;
(2)七天内游客人数最多的是
 
日,最少的是
 
日.
(3)以9月30日的游客人数为0点,用折线统计图表示这7天的游客人数变化情况.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在△ABC中,∠BAC=90°,AD⊥BC,AB=4,DC=
9
5
,求sinC的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

从甲、乙两位运动员中选出一名参加在规定时间内的投篮比赛.预先对这两名运动员进行了6次测试,成绩如下(单位:个):
甲:6,12,8,12,10,12;
乙:9,10,11,10,12,8;
(1)填表:
平均数众数方差
10
 
 
 
10
5
3
(2)根据测试成绩,请你运用所学的统计知识作出分析,派哪一位运动员参赛更好?为什么?

查看答案和解析>>

科目:初中数学 来源: 题型:

已知C点是直线AB上的一动点.
(1)如图1,当C在线段AB上运动时,作DC⊥AB,垂足为C,EA⊥AB,垂足为A,且DC=AB,AE=BC.连接DE,判断△BDE的形状,并说明理由;
(2)如图2,当C在线段AB的延长线上运动时,作DC⊥AB,垂足为C,EA⊥AB,垂足为A,且DC=AB,AE=BC.连接DE,判断△BDE的形状,并说明理由.

查看答案和解析>>

同步练习册答案