精英家教网 > 初中数学 > 题目详情

如图,已知一次函数y=-数学公式x+b的图象经过点A(2,3),AB⊥x轴,垂足为B,连接OA.
(1)求此一次函数的解析式;
(2)设点P为直线y=-数学公式x+b上的一点,且在第一象限内,经过P作x轴的垂线,垂足为Q.若S△POQ=数学公式S△AOB,求点P的坐标.

解:(1)∵一次函数y=-x+b的图象经过点A(2,3),
∴3=(-)×2+b,
解得b=4,
故此一次函数的解析式为:y=-x+4;

(2)设P(p,d),p>0,
∵点P在直线y=-x+4的图象上,
∴d=-p+4①,
∵S△POQ=S△AOB=××2×3,
pd=②,
①②联立得,
解得
∴P点坐标为:(3,)或(5,).
分析:(1)直接把点A(2,3)代入一次函数y=-x+b即可求出b的值,进而得出一次函数的解析式;
(2)设P(p,d),p>0,再根据点P在一次函数的图象上及S△POQ=S△AOB,即可得出关于p、d的方程组,求出p、d的值即可.
点评:本题考查的是用待定系数法求一次函数的解析式及一次函数图象上点的坐标特点,熟知一次函数图象上各点的坐标一定适合此函数的解析式是解答此题的关键.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

如图,已知一次函数y1=kx+b的图象与反比例函数y2=
ax
的图象交于A(2,4)和精英家教网B(-4,m)两点.
(1)求这两个函数的解析式;
(2)求△AOB的面积;
(3)根据图象直接写出,当y1>y2时,x的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,已知一次函数y=kx+b的图象与反比例函数y=-
8x
的图象交于A,B点,且点A的横坐标和点B的纵坐标都是-2.求:
(1)求A、B两点坐标;
(2)求一次函数的解析式;
(3)根据图象直接写出使一次函数的值小于反比例函数的值的x的取值范围.
(4)求△AOB的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•新疆)如图,已知一次函数y1=kx+b与反比例函数y2=
mx
的图象交于A(2,4)、B(-4,n)两点.
(1)分别求出y1和y2的解析式;
(2)写出y1=y2时,x的值;
(3)写出y1>y2时,x的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,已知一次函数y=k1x+b经过A、B两点,将点A向上平移1个单位后刚好在反比例函数y=
k2x
上.
(1)求出一次函数解析式.
(2)求出反比例函数解析式.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,已知一次函数y=kx+b的图象交反比例函数y=
4-2m
x
的图象交于点A、B,交x轴于点C.
(1)求m的取值范围;
(2)若点A的坐标是(2,-4),且
BC
AB
=
1
3
,求m的值和一次函数的解析式;
(3)根据图象,写出当反比例函数的值小于一次函数的值时x 的取值范围?

查看答案和解析>>

同步练习册答案