18£®¹æ¶¨¹ØÓÚxµÄÒ»ÔªÒ»´Î·½³Ìax=bµÄ½âΪb-a£¬Ôò³Æ¸Ã·½³ÌÊǶ¨½â·½³Ì£¬ÀýÈ磺3x=4.5µÄ½âΪ4.5-3=1.5£¬Ôò¸Ã·½³Ì3x=4.5¾ÍÊǶ¨½â·½³Ì£»
£¨1£©Èô¹ØÓÚxµÄÒ»ÔªÒ»´Î·½³Ì2x=mÊǶ¨½â·½³Ì£¬ÇómµÄÖµ£»
£¨2£©Èô¹ØÓÚxµÄÒ»ÔªÒ»´Î·½³Ì2x=ab+aÊǶ¨½â·½³Ì£¬ËüµÄ½âΪa£¬Çóa£¬bµÄÖµ£»
£¨3£©Èô¹ØÓÚxµÄÒ»ÔªÒ»´Î·½³Ì2x=mn+mºÍ-2x=mn+n¶¼ÊǶ¨½â·½³Ì£¬Çó´úÊýʽ£¨mn+m£©2-9£¨mn+n£©2-3£¨m-n£©µÄÖµ£®

·ÖÎö £¨1£©¸ù¾Ý¶¨½â·½³ÌµÄ¶¨Òå¼´¿ÉµÃ³ö¹ØÓÚmµÄÒ»ÔªÒ»´Î·½³Ì£¬½âÖ®¼´¿ÉµÃ³ö½áÂÛ£»
£¨2£©¸ù¾Ý¶¨½â·½³ÌµÄ¶¨Òå¼´¿ÉµÃ³ö¹ØÓÚa¡¢bµÄ¶þÔª¶þ´Î·½³Ì×飬½âÖ®¼´¿ÉµÃ³öa¡¢bµÄÖµ£»
£¨3£©¸ù¾Ý¶¨½â·½³ÌµÄ¶¨Òå¼´¿ÉµÃ³ömn+m=4¡¢mn+n=-$\frac{4}{3}$£¬¶þÕß×ö²î¼´¿ÉµÃ³öm-nµÄÖµ£¬½«Èý¸öÊý´úÈë´úÊýʽ£¨mn+m£©2-9£¨mn+n£©2-3£¨m-n£©Öм´¿ÉËã³ö½áÂÛ£®

½â´ð ½â£º£¨1£©¡ß·½³Ì2x=mÊǶ¨½â·½³Ì£¬
¡à$\frac{m}{2}$=m-2£¬
½âµÃ£ºm=4£®
¡àÈô¹ØÓÚxµÄÒ»ÔªÒ»´Î·½³Ì2x=mÊǶ¨½â·½³Ì£¬ÔòmµÄֵΪ4£®
£¨2£©¡ß·½³Ì2x=ab+aÊǶ¨½â·½³Ì£¬ËüµÄ½âΪa£¬
¡à$\left\{\begin{array}{l}{\frac{ab}{2}+\frac{a}{2}=a}\\{ab+a-2=a}\end{array}\right.$£¬
½âµÃ£º$\left\{\begin{array}{l}{a=2}\\{b=1}\end{array}\right.$£®
¡àÈô¹ØÓÚxµÄÒ»ÔªÒ»´Î·½³Ì2x=ab+aÊǶ¨½â·½³Ì£¬ËüµÄ½âΪa£¬ÔòaµÄֵΪ2¡¢bµÄֵΪ1£®
£¨3£©¡ß·½³Ì2x=mn+mºÍ-2x=mn+n¶¼ÊǶ¨½â·½³Ì£¬
¡à$\left\{\begin{array}{l}{\frac{mn}{2}+\frac{m}{2}=mn+m-2}\\{-\frac{mn}{2}-\frac{n}{2}=mn+n-£¨-2£©}\end{array}\right.$£¬
¡àmn+m=4£¬mn+n=-$\frac{4}{3}$£¬
¡àm-n=4-£¨-$\frac{4}{3}$£©=$\frac{16}{3}$£¬
¡à£¨mn+m£©2-9£¨mn+n£©2-3£¨m-n£©=42-9¡Á$£¨-\frac{4}{3}£©^{2}$-3¡Á$\frac{16}{3}$=-16£®

µãÆÀ ±¾Ì⿼²éÁËÒ»Ôª¶þ´Î·½³ÌµÄ½â¡¢½âÒ»ÔªÒ»´Î·½³ÌÒÔ¼°¶þÔª¶þ´Î·½³Ì×飬½âÌâµÄ¹Ø¼üÊÇ£º£¨1£©¸ù¾Ý¶¨½â·½³ÌµÄ¶¨ÒåÁгö¹ØÓÚmµÄÒ»ÔªÒ»´Î·½³Ì£»£¨2£©¸ù¾Ý¶¨½â·½³ÌµÄ¶¨ÒåÁгö¹ØÓÚa¡¢bµÄ¶þÔª¶þ´Î·½³Ì×飻£¨3£©¸ù¾Ý¶¨½â·½³ÌµÄ¶¨ÒåÕÒ³ömn+m=4¡¢mn+n=-$\frac{4}{3}$£®

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

8£®¹Û²ìÏÂÁи÷ʽ£º
-1¡Á$\frac{1}{2}$=-1+$\frac{1}{2}$
-$\frac{1}{2}$¡Á$\frac{1}{3}$=-$\frac{1}{2}$+$\frac{1}{3}$
-$\frac{1}{3}$¡Á$\frac{1}{4}$=-$\frac{1}{3}$+$\frac{1}{4}$¡­
£¨1£©ÄãÄÜ̽Ë÷³öʲô¹æÂÉ£¿£¨ÓÃÎÄ×Ö»ò±í´ïʽ£©
£¨2£©ÊÔÔËÓÃÄã·¢ÏֵĹæÂɼÆËã
£¨-1¡Á$\frac{1}{2}$£©+£¨-$\frac{1}{2}$¡Á$\frac{1}{3}$£©+£¨-$\frac{1}{3}$¡Á$\frac{1}{4}$£©+¡­+£¨-$\frac{1}{2013}$¡Á$\frac{1}{2014}$£©+£¨-$\frac{1}{2014}$¡Á$\frac{1}{2015}$£©

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

9£®¼ÆËã
£¨1£©90¡ã-78¡ã19¡ä40¡å£»                  
£¨2£©11¡ã23¡ä26¡å¡Á3£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

6£®Î÷°²ÊÐijͨÐŹ«Ë¾µÄÊÖ»úÊշѱê×¼ÓÐÁ½À࣮AÀࣺ²»¹Üͨ»°Ê±¼ä¶à³¤£¬Ã¿²¿ÊÖ»úÿÔ±ØÐë½ÉÔÂ×â·Ñ12Ôª£¬ÁíÍ⣬ͨÐÅ·Ñ°´0.2Ôª/min¼Æ£®BÀࣺûÓÐÔÂ×â·Ñ£¬µ«Í¨»°·Ñ°´0.25Ôª/min¼Æ£®
£¨1£©Ð´³öÿÔÂÓ¦½É·ÑÓÃy£¨Ôª£©Óëͨ»°Ê±¼äx£¨min£©Ö®¼äµÄ¹Øϵʽ£®
£¨2£©ÈôÿÔÂƽ¾ùͨ»°Ê±¼äΪ300min£¬Äã»áÑ¡ÔñÄÄÀàÊÕ·Ñ·½Ê½£¿
£¨3£©Ã¿ÔÂͨ»°¶à³¤Ê±¼ä£¬°´A¡¢BÁ½ÀàÊշѱê×¼½É·Ñ£¬Ëù½É»°·ÑÏàµÈ£¿

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

13£®¼ÆË㣺£¨-3£©2-1=8£¬$\sqrt{4}$-5=-3£¬¡À$\sqrt{49}$=¡À7£¬$\root{3}{-64}$=-4£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

3£®ÒÑÖª£¬Èçͼ£ºÔÚƽÃæÖ±½Ç×ø±êϵÖУ¬OΪ×ø±êÔ­µã£¬OABCÊdz¤·½ÐΣ¬µãA¡¢CµÄ×ø±ê·Ö±ðΪA£¨20£¬0£©£¬C£¨0£¬8£©£¬µãDÊÇOAµÄÖе㣬µãPÔÚBC±ßÉÏÔ˶¯£¬¡÷ODPÊÇÑü³¤Îª10µÄµÈÑüÈý½ÇÐÎʱ£¬ÇóÂú×ãÌõ¼þµÄµãPµã×ø±ê£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

10£®ÔÚ¡÷ABCÖУ¬CDÊÇAB±ßÉϵĸߣ¬AC=4£¬BC=3£¬DB=1.8
£¨1£©ÇóADµÄ³¤£»
£¨2£©¡÷ABCÊÇÖ±½ÇÈý½ÇÐÎÂð£¿Çë˵Ã÷ÀíÓÉ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

7£®£¨1£©²Ù×÷·¢ÏÖ£ºÈçͼ£¬Ð¡Ã÷ÔÚ¾ØÐÎֽƬABCDµÄ±ßADÉÏÈ¡ÖеãE£¬½«¡÷ABEÑØBEÕÛµþºóµÃµ½¡÷GBE£¬ÇÒµãGÔÚ¾ØÐÎABCDÄÚ²¿£¬½«BGÑÓ³¤½»DCÓÚµãF£¬ÈÏΪGF=DF£¬ÄãͬÒâÂð£¿ËµÃ÷ÀíÓÉ£®
£¨2£©ÎÊÌâ½â¾ö£º±£³Ö£¨1£©ÖÐÌõ¼þ²»±ä£¬ÈôDC=2FC£¬Çó$\frac{AD}{AB}$µÄÖµ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

4£®Èçͼ1£¬µãOΪֱÏßABÉÏÒ»µã£¬¹ýµãO×÷ÉäÏßOC£¬Ê¹¡ÏBOC=112¡ã£®½«Ò»Ö±½ÇÈý½Ç°åµÄÖ±½Ç¶¥µã·ÅÔÚµãO´¦£¬Ò»±ßOMÔÚÉäÏßOBÉÏ£¬ÁíÒ»±ßONÔÚÖ±ÏßABµÄÏ·½£®
£¨1£©½«Í¼1ÖеÄÈý½Ç°åÈƵãOÄæʱÕëÐýתÖÁͼ2£¬Ê¹Ò»±ßOMÔÚ¡ÏBOCµÄÄÚ²¿£¬ÇÒÇ¡ºÃƽ·Ö¡ÏBOC£¬ÎÊ£ºÖ±ÏßONÊÇ·ñƽ·Ö¡ÏAOC£¿Çë˵Ã÷ÀíÓÉ£»
£¨2£©½«Í¼1ÖеÄÈý½Ç°åÈƵãO°´Ã¿Ãë4¡ãµÄËÙ¶ÈÑØÄæʱÕë·½ÏòÐýתһÖÜ£¬ÔÚÐýתµÄ¹ý³ÌÖУ¬µÚtÃëʱ£¬Ö±ÏßONÇ¡ºÃƽ·ÖÈñ½Ç¡ÏAOC£¬ÔòtµÄֵΪ¶àÉÙ£¿
£¨3£©½«Í¼1ÖеÄÈý½Ç°åÈƵãO˳ʱÕëÐýתÖÁͼ3£¬Ê¹ONÔÚ¡ÏAOCµÄÄÚ²¿£¬Çë̽¾¿£º¡ÏAOMÓë¡ÏNOCÖ®¼äµÄÊýÁ¿¹Øϵ£¬²¢ËµÃ÷ÀíÓÉ£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸