【题目】如图,在平面直角坐标系中,已知顶点的坐标分别为,且是由旋转得到.若点在上,点在轴上,要使四边形为平行四边形,则满足条件的点的坐标为______.
【答案】(1.5,2)或(3.5,2)或(0.5,4).
【解析】
要使以为顶点的四边形是平行四边形,则PQ=AC=2,在直线AB上到x轴的距离等于2 的点,就是P点,因此令y=2或2求得x的值即可.
∵点Q在x轴上,点P在直线AB上,以为顶点的四边形是平行四边形,
当AC为平行四边形的边时,
∴PQ=AC=2,
∵P点在直线y=2x+5上,
∴令y=2时,2x+5=2,解得x=1.5,
令y=2时,2x+5=2,解得x=3.5,
当AC为平行四边形的对角线时,
∵AC的中点坐标为(3,2),
∴P的纵坐标为4,
代入y=2x+5得,4=2x+5,
解得x=0.5,
∴P(0.5,4),
故P为(1.5,2)或(3.5,2)或(0.5,4).
故答案为:(1.5,2)或(3.5,2)或(0.5,4).
科目:初中数学 来源: 题型:
【题目】工业园区某机械厂的一个车间主要负责生产螺丝和螺母,该车间有工人44人,其中女生人数比男生人数的倍少人,每个工人平均每天可以生产螺丝个或者螺母个
(1)该车间有男生、女生各多少人?
(2)已知一个螺丝与两个螺母配套,为了使每天生产的螺丝螺母恰好配套,应该分配多少工人负责生产螺丝,多少工人负责生产螺母?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】定义:如图1,在△ABC和△ADE中,AB=AC=AD=AE,当∠BAC+∠DAE=180°时,我们称△ABC与△DAE互为“顶补等腰三角形”,△ABC的边BC上的高线AM叫做△ADE的“顶心距”,△ADE的边DE上的高线AN叫做△ABC的“顶心距”,点A叫做“顶补中心”.
特例感知
(1)图2,图3中,△ABC与△DAE互为“顶补等腰三角形”,AM,AN是“顶心距”,
①如图2,当∠BAC=90°时,AM与DE之间的数量关系为AM=_________DE,
②如图3,当∠BAC=120°,BC=6时,AN的长为_________,
猜想论证
(2)在图1中,当∠BAC为任意角时,猜想AM与DE之间的数量关系,并给予证明.
拓展应用
(3)如图4,在四边形ABCD中,AD=AB,CD=BC,∠B=90°,∠A=60°,CD=2,在四边形|ABCD的内部是否存在点P,使 得△PAD与△PBC互为“顶补等腰三角形”?若存在,请给予证明,并求△PBC的“顶心距”的长;若不存在, 请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某学校为了创建书香校园,去年购买了一批图书.其中科普书的单价比文学书的单价多8元,用1800元购买的科普书的数量与用l000元购买的文学书的数量相同.
(1)求去年购买的文学书和科普书的单价各是多少元;
(2)这所学校今年计划再购买这两种文学书和科普书共200本,且购买文学书和科普书的总费用不超过2088元.今年文学书的单价比去年提高了20%,科普书的单价与去年相同,且每购买1本科普书就免费赠送1本文学书,求这所学校今年至少要购买多少本科普书?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,△ABC的周长为1,E、F、G分别为AB、AC、BC的中点,A′、B′、C′分别为EF、EG、GF的中点,如果△ABC、△EFG、△A′B′C′分别为第1个、第2个、第3个三角形,按照上述方法继续作三角形,那么第n个三角形的周长是__________________.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知二次函数y=x2-2x-3,点P在该函数的图象上,点P到x轴、y轴的距离分别为d1、d2.设d=d1+d2,下列结论中: ①d没有最大值; ②d没有最小值; ③ -1<x<3时,d 随x的增大而增大; ④满足d=5的点P有四个.其中正确结论的个数有( )
A. 1个 B. 2个 C. 3个 D. 4个
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图所示的方格纸中,每个小正方形的边长为1,每个小正方形的顶点叫格点,请利用格点画图.
(1)在图①中过点画的平行线,并标出经过的格点M;
(2)在图①中过点画的垂线,交于点,并标出经过的格点N;
(3)三角形的面积是 ;
(4)网格中的“平移”是指只沿方格的格线(即上下或左右)运动,将图②中的任一条线段平移1格称为“1步”,要通过平移,使图②中的3条线段首尾相接组成一个三角形,最少需要移动 步.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com