精英家教网 > 初中数学 > 题目详情
17.如图,Rt△ABO中,△AOB=90°,点A在第一象限、点B在第四象限,且AO:BO=1:$\sqrt{2}$,若已知点A在双曲线y=$\frac{1}{x}$上,点B在双曲线y=$\frac{k}{x}$上,求k的值.

分析 设点B坐标为(x,y),分别过点A、B作AC,BD分别垂直y轴于点C、D,由相似三角形的判定定理得出△AOC∽△OBD,再由相似三角形的性质得出△OBD的面积,进而根据三角形面积公式可得出结论.

解答 解:设点B坐标为(x,y),分别过点A、B作AC,BD分别垂直y轴于点C、D,
∵∠ACO=∠BDO=90°,
∠AOC+∠BOD=90°,
∠AOC+∠OAC=90°,
∴∠OAC=∠BOD,
∴△AOC∽△OBD,
∴$\frac{{S}_{△AOC}}{{S}_{△BOD}}$=($\frac{OA}{OB}$)2=($\frac{1}{\sqrt{2}}$)2=$\frac{1}{2}$,
设点A(x0,y0)且x0,y0满足y0=$\frac{1}{{x}_{0}}$,
∴S△AOC=$\frac{1}{2}$,
∴S△BOD=1,
而点B坐标为(x,y),
∴$\frac{1}{2}$x•(-y)=1,
∴xy=-2.
∴k=-2.

点评 此题考查了相似三角形的判定和性质,反比例函数图象上点的坐标特点,此题难度适中,注意掌握辅助线的作法,注意掌握数形结合思想的应用.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:选择题

7.如图,在矩形ABCD中,AB=4cm,AD=5cm.点E在BC边上,且BE=1cm,AF平分∠BAD.图中P为AF上任意一点,若P为AF上任意一动点,请确定一点P,连接BP、EP,则BP+EP的最小值为(  )
A.4cmB.5cmC.4$\sqrt{2}$cmD.3cm

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

8.如图,在△ABC中,点D在线段BC上,且△ABC∽△DBA.求证:AB2=BC•BD.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

5.先化简.再求值:($\frac{1-a}{a+1}$+1)÷$\frac{2}{{a}^{2}-1}$,其中a=$\sqrt{3}$.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

12.如图,△ABC中,∠BAC=90°,E为AC的中点,AM⊥BC于M,EM交AB的延长线于N.
(1)求证:AM2=BM•CM;
(2)若AM=2,EM=$\sqrt{5}$,求$\frac{BN}{MN}$.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

2.已知$\frac{2}{3}{x}^{3m+2}{y}^{3}$与5x3n-4y3是同类项,求m-n的值.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

9.如果3xm+2y2-n与2xy2是同类项,那么m=-1,n=0.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

6.先验证下列结论的正确性:
①方程x-$\frac{1}{x}$=2-$\frac{1}{2}$的根是x1=2,x2=-$\frac{1}{2}$;
②方程x-$\frac{1}{x}$=3一$\frac{1}{3}$的根是x1=3,x2=-$\frac{1}{3}$;
③方程x-$\frac{1}{x}$=3+$\frac{3}{4}$的根是x1=4,x2=-$\frac{1}{4}$;
④方程x-$\frac{1}{x}$=4+$\frac{4}{5}$的根是x1=5,x2=-$\frac{1}{5}$.
再观察上述方程及其根的特征,猜想方程x-$\frac{1}{x}$=8$\frac{8}{9}$的根是什么,并验证你的猜想.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

7.已知关于x的方程k(x+1)=k-2(x-2)中,求当k取什么整数值时,方程的解是整数.

查看答案和解析>>

同步练习册答案