【题目】如图所示,在ABCD中,对角线AC与BD相交于点O,过点O作一条直线分别交AB,CD于点E,F.
(1)求证:OE=OF;
(2)若AB=6,BC=5,OE=2,求四边形BCFE的周长.
【答案】
(1)证明:在□ABCD中,
∵AC与BD相交于点O,
∴OA=OC,AB∥CD,
∴∠OAE=∠OCF,在△OAE和△OCF中, ,
∴△OAE≌△OCF(ASA),
∴OE=OF.
(2)解:∵△OAE≌△OCF,
∴DF=AE,
∴BE+CF=AB=6,
又∵EF=2OE=4,
∴四边形BCFE的周长=BE+BE+CF+EF=6+4+5=15
【解析】(1)由四边形ABCD是平行四边形,可得OA=OC,AB∥CD,则可证得△AOE≌△COF(ASA),继而证得OE=OF;(2)由△AOE≌△COF(ASA),可得EF=2OE=4,BE+CF=AB=6,继而求得答案.
【考点精析】认真审题,首先需要了解平行四边形的性质(平行四边形的对边相等且平行;平行四边形的对角相等,邻角互补;平行四边形的对角线互相平分).
科目:初中数学 来源: 题型:
【题目】如图,△ABC是等边三角形,D为BC边上一个动点(D与B、C均不重合),AD=AE,∠DAE=60°,连接CE.
(1)求证:△ABD≌△ACE;
(2)求证:CE平分∠ACF;
(3)若AB=2,当四边形ADCE的周长取最小值时,求BD的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知:线段AB,BC,∠ABC=90°.求作:矩形ABCD.以下是甲、乙两同学的作业:
甲:(1)以点C为圆心,AB长为半径画弧;
(2)以点A为圆心,BC长为半径画弧;
(3)两弧在BC上方交于点D,连接AD,CD,四边形ABCD即为所求(如图1)
乙:(1)连接AC,作线段AC的垂直平分线,交AC于点M;
(2)连接BM并延长,在延长线上取一点D,使MD=MB,连接AD,CD,四边形ABCD即为所求(如图2).
对于两人的作业,下列说法正确的是( )
A. 两人都对 B. 两人都不对 C. 甲对,乙不对 D. 甲不对,乙对
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】用正方形硬纸板做三棱柱盒子,每个盒子由3个矩形侧面和2个正三角形底面组成。硬纸板以如图两种方式裁剪(裁剪后边角料不再利用)
A方法:剪6个侧面; B方法:剪4个侧面和5个底面。
现有19张硬纸板,裁剪时张用A方法,其余用B方法。
(1)用的代数式分别表示裁剪出的侧面和底面的个数;
(2)若裁剪出的侧面和底面恰好全部用完,问能做多少个盒子?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,两个连接在一起的菱形的边长都是1cm,一只电子甲虫从点A开始按ABCDAEFGAB…的顺序沿菱形的边循环爬行,当电子甲虫爬行2014cm时停下,则它停的位置是( )
A. 点F B. 点E C. 点A D. 点C
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在平面直角坐标系中,横、纵坐标都为整数的点称为整点.如图,从内向外依次为第,,,,个正方形(实线),若整点在第个正方形的边上,则,,之间满足的数量关系为_______.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,B、C是⊙A上的两点,AB的垂直平分线与⊙A交于E、F两点,与线段AC交于D点.若∠BFC=20°,则∠DBC=( )
A.30°
B.29°
C.28°
D.20°
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在正方形ABCD中,△BPC是等边三角形,BP、CP的延长线分别交AD于点E、F,连接BD、DP,BD与CF相交于点H,给出下列结论:①BE=2AE;②△DFP∽△BPH;③△PFD∽△PDB;④DP2=PHPC
其中正确的是( )
A.①②③④
B.②③
C.①②④
D.①③④
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】完成下面的证明,在括号内填上理由.
如图,,.
求证:.
证明: (已知),
(____________________).
(____________________).
__________(____________________).
(____________________).
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com