精英家教网 > 初中数学 > 题目详情

【题目】如图,ABC是等边三角形,DBC边上一个动点(DBC均不重合),AD=AE,∠DAE=60°,连接CE

1)求证:ABD≌△ACE

2)求证:CE平分∠ACF

3)若AB=2,当四边形ADCE的周长取最小值时,求BD的长.

【答案】(1)详见解析;(2)详见解析;(3)1.

【解析】

(1)由于AB=AC,AD=AE,所以只需证∠BAD=CAE即可得结论;

(2)证明∠ACE和∠ECF都等于60°即可;

(3)将四边形ADCE的周长用AD表示,AD最小时就是四边形ADCE的周长最小,根据垂线段最短原理,当ADBC时,AD最小,此时BD就是BC的一半.

(1)证明:∵△ABC是等边三角形,

AB=AC,BAC=60°,

∵∠DAE=60°,

∴∠BAD+DAC=CAE+DAC,

即∠BAD=CAE,

ABDACE中,

∴△ABD≌△ACE.

(2)证明:∵△ABC是等边三角形,

∴∠B=BCA=60°,

∵△ABD≌△ACE,

∴∠ACE=B=60°,

∵△ABD≌△ACE,

∴∠ACE=B=60°,

∴∠ECF=180﹣ACE﹣BCA=60°,

∴∠ACE=ECF,

CE平分∠ACF.

(3)解:∵△ABD≌△ACE,

CE=BD,

∵△ABC是等边三角形,

AB=BC=AC=2,

∴四边形ADCE的周长=CE+DC+AD+AE=BD+DC+2AD=2+2AD,

根据垂线段最短,当ADBC时,AD值最小,四边形ADCE的周长取最小值,

AB=AC,

BD=BC=

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】某商场服装部为了调动营业员的积极性,决定实行目标管理,即确定一个月销售目标,根据目标完成的情况对营业员进行适当的奖惩.为了确定一个适当的目标,商场统计了每个营业员在某月的销售额,统计图如下:

请你结合统计图和平均数、众数和中位数解答下列问题:(结果保留整数)

(1)月销售额在哪个值的人最多?月销售额处于中间的是多少?月平均销售额是多少?

(2)如果想确定一个较高的销售目标,你认为月销售额定为多少合适?请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】先阅读理解下面的例题,再按要求解答下列问题:

例题:求代数式y2+4y+8的最小值.

解:y2+4y+8=y2+4y+4+4=(y+2)2+4

y+2)2≥0

y+2)2+4≥4

y2+4y+8的最小值是4.

(1)求代数式m2+m+4的最小值;

(2)求代数式4﹣x2+2x的最大值;

(3)某居民小区要在一块一边靠墙(墙长15m)的空地上建一个长方形花园ABCD,花园一边靠墙,另三边用总长为20m的栅栏围成.如图,设AB=x(m),请问:当x取何值时,花园的面积最大?最大面积是多少?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,有一块不规则的四边形地皮ABCO,各个顶点的坐标分别为A(26)B(54)C(70)O(00)(图上一个单位长度表示10),现在想对这块地皮进行规划,需要确定它的面积.

(1)求这个四边形的面积;

(2)如果把四边形ABCD的各个顶点的纵坐标保持不变,横坐标加2,所得到的四边形面积是多少?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】方法回顾:在进行数值估算时,我们常根据所求数值的条件确定它的大致范围,然后通过逐步缩小数值存在范围的方法,最终求得较为准确的数值.

如我们在探究面积为2的正方形的边长a的值时,有如下探究过程:

1<a<2

1<s<4

1.4<a<1.5

1.96<s<2.25

1.41<a<1.42

1.9881<s<2.0164

1.414<a<1.415

1.999396<s<2.002225

我们也可以借助数轴直观地看出“逐步缩小数值的存在范图”的过程,

这种方法在我们的解决向题的过程中经常会用到

问题提出:a是小于100的正整数,已知它的立方,不借助计算器,如何确定a呢?

问题探究:我们不妨由简单到复杂,从一位整数的立方开始硏究

步骤一、若13a3<103,则1<a<10.即已知一个一位整数的立方为a3,怎样确定a

易得:13=1,23=8,33=27,43=64,53=125,63=216,73=343:83=512,93=729,可以通过从19的九个整数的立方值确定这个数.观察这九个立方值我们还能发现,他们的个位数字各不相同.

步骤二、若103a3<1003.则10<a<100,即已知一个两位数的立方为a3,怎样确定a?我们不妨举几个特例,以便寻找解决问题的方法.

特例1.如果一个两位整数a的立方是5832,怎样确定a

因为103<5832<1003,所以10<a<100,a是一个两位数.

又因为103<5832<203,所以我们可以确定5832的十位数字是  ;再根据步骤一我们就能得出它的个位数是   ;从而确定这个两位数是   

特例2.如果x是一个两位整数,且x3=614125,请你仿照上面的过程说明你确定这个两位整数的方法.

拓展应用:一颗近似球形的小行星的体积的为2624000πm3,请你根据以上方法求出这个小行星的半径.(球的体积公式vπR3

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,AC,BD为圆O的两条互相垂直的直径,动点P从圆心O出发,沿O→C→D→O的路线作匀速运动,设运动时间为t秒,∠APB的度数为y度,那么表示y与t之间函数关系的图象大致为( )

A.
B.
C.
D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,两个函数yxy=﹣x+6的图象交于点A.动点P从点O开始沿OA方向以每秒1个单位的速度运动,作PQx轴交直线BC于点Q,以PQ为一边向下作正方形PQMN,设它与△OAB重叠部分的面积为S

(1)求点A的坐标.

(2)试求出点P在线段OA上运动时,S与运动时间t(秒)的关系式.

(3)(2)的条件下,S是否有最大值若有,求出t为何值时,S有最大值,并求出最大值;若没有,请说明理由.

(4)若点P经过点A后继续按原方向、原速度运动,当正方形PQMN与△OAB重叠部分面积最大时,运动时间t满足的条件是   

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】1是一个长为,宽为的长方形,沿图中虚线用剪刀均匀分成四块小长方形,然后按图2形状拼成一个正方形.

1)请用两种不同方法,求图2中阴影部分的面积(不用化简)

方法1____________________

方法2____________________

2)观察图2,写出之间的等量关系,并验证;

3)根据(2)题中的等量关系,解决如下问题:

①若,求的值;

②若,求的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图所示,在ABCD中,对角线AC与BD相交于点O,过点O作一条直线分别交AB,CD于点E,F.
(1)求证:OE=OF;
(2)若AB=6,BC=5,OE=2,求四边形BCFE的周长.

查看答案和解析>>

同步练习册答案