精英家教网 > 初中数学 > 题目详情

【题目】如图,有一块不规则的四边形地皮ABCO,各个顶点的坐标分别为A(26)B(54)C(70)O(00)(图上一个单位长度表示10),现在想对这块地皮进行规划,需要确定它的面积.

(1)求这个四边形的面积;

(2)如果把四边形ABCD的各个顶点的纵坐标保持不变,横坐标加2,所得到的四边形面积是多少?

【答案】(1) 2500平方米;(2)所得到的四边形的面积与原四边形的面积相等,为2500平方米.

【解析】

(1)过点AAG⊥x轴于点G,过点BBF⊥x轴于点F,把四边形ABCO的面积分成两个三角形的面积与梯形的面积的和,然后列式求解即可;
(2)横坐标增加2,纵坐标不变,就是把四边形ABCO向右平移2个单位,根据平移的性质,四边形的面积不变.

(1)BBFx轴于F,过AAGx轴于G,如图所示.

S四边形ABCOS三角形BCFS梯形ABFGS三角形AGO

[]

×1022500(平方米)

(2)把四边形ABCO的各个顶点的纵坐标保持不变,横坐标加2,即将这个四边形向右平移2个单位长度,

故所得到的四边形的面积与原四边形的面积相等,为2500平方米.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图1所示,等边△ABC中,ADBC边上的中线,根据等腰三角形的三线合一特性,AD平分∠BAC,且ADBC,则有∠BAD=30°,BD=CD=AB.于是可得出结论直角三角形中,30°角所对的直角边等于斜边的一半”.

请根据从上面材料中所得到的信息解答下列问题:

(1)如图2所示,在△ABC中,∠ACB=90°,BC的垂直平分线交AB于点D,垂足为E,当BD=5cm,B=30°时,求△ACD的周长.

(2)如图3所示,在△ABC中,AB=AC,A=120°,DBC的中点,DEAB,垂足为E,求BE:EA的值.

(3)如图4所示,在等边△ABC中,D、E分别是BC、AC上的点,且AE=DC,AD、BE交于点P,作BQADQ,若BP=2,求PQ的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图①,O是直线AB上的一点,∠COD是直角,OE平分∠BOC.

(1)若∠AOC=30°时,则∠DOE的度数为_____

(2)将图①中的∠COD绕顶点O顺时针旋转至图②的位置,其它条件不变,探究∠AOC和∠DOE的度数之间的关系,写出你的结论,并说明理由;

(3)将图①中的∠COD绕顶点O顺时针旋转至图③的位置,其他条件不变.直接写出∠AOC和∠DOE的度数之间的关系:_____

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,C为线段AB上一点,点DBC的中点,且AB18cmAC4CD

1)图中共有   条线段;

2)求AC的长;

3)若点E在直线AB上,且EA2cm,求BE的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,长方形ABCD在坐标平面内,点A的坐标是A(1),且边ABCDx轴平行,边ADBCy轴平行,AB4AD2.

(1)BCD三点的坐标;

(2)怎样平移,才能使A点与原点O重合?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】(1)材料1:一般地,n个相同因数a相乘: 记为 ,此时,3叫做以2为底的8的对数,记为log28(即log28=3).那么,log39=________=________

(2)材料2:新规定一种运算法则:自然数1n的连乘积用n!表示,例如:1!=1,2!=2×1=2,3!=3×2×1=6,4!=4×3×2×1=24,…在这种规定下,请你解决下列问题:

5!=________

②已知x为整数,求出满足该等式的.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,ABC是等边三角形,DBC边上一个动点(DBC均不重合),AD=AE,∠DAE=60°,连接CE

1)求证:ABD≌△ACE

2)求证:CE平分∠ACF

3)若AB=2,当四边形ADCE的周长取最小值时,求BD的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在ABCD中,BD是对角线,且DB⊥BC,E、F分别为边AB、CD的中点.求证:四边形DEBF是菱形.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】用正方形硬纸板做三棱柱盒子,每个盒子由3个矩形侧面和2个正三角形底面组成。硬纸板以如图两种方式裁剪(裁剪后边角料不再利用)

A方法:剪6个侧面; B方法:剪4个侧面和5个底面。

现有19张硬纸板,裁剪时张用A方法,其余用B方法。

1)用的代数式分别表示裁剪出的侧面和底面的个数;

2)若裁剪出的侧面和底面恰好全部用完,问能做多少个盒子?

查看答案和解析>>

同步练习册答案