精英家教网 > 初中数学 > 题目详情

如图所示,已知△ABC中,∠BAC=90°,AB=AC,∠BAD=30°,AD=AE,则∠EDC的度数为


  1. A.
    10°
  2. B.
    15°
  3. C.
    20°
  4. D.
    30°
B
分析:先根据△ABC中,∠BAC=90°,AB=AC求出∠B、∠DAE的度数,再根据AD=AE可得出∠AED的度数,由三角形内角和定理求出∠ADC的度数,进而可得出结论.
解答:∵△ABC中,∠BAC=90°,AB=AC,
∴∠B=∠C==45°,
∵△ABD中,∠B=45°,∠BAD=30°,
∴∠ADC=∠B+∠BAD=45°+30°=75°,
∵∠BAC=90°,∠BAD=30°,
∴∠DAC=90°-30°=60°,
∵AD=AE,
∴∠DAE=∠DEA=60°,
∴∠ADE=180°-∠DAE-∠DEA=180°-60°-60°=60°,
∴∠EDC=∠ADC-∠ADE=75°-60°=15°.
故选B.
点评:本题考查的是等腰三角形的性质,解答此类题目时要注意三角形内角和定理、三角形外角的性质等知识的具体运用.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网如图所示,已知AB∥EF∥CD,若AB=6厘米,CD=9厘米.求EF.

查看答案和解析>>

科目:初中数学 来源: 题型:

5、如图所示,已知AB∥CD,EF平分∠CEG,∠1=80°,则∠2的度数为(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

23、如图所示,已知AB∥CD,分别探索下列四个图形中∠P与∠A,∠C的关系.要求:(1)、(2)直接写出结论,(3)、(4)写出结论并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图所示,已知AB为圆O的直径,AC为弦,OD∥BC交AC于D,OD=2cm,求BC的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图所示,已知AB=AC,BD⊥AC,试说明∠BAC=2∠CBD.

查看答案和解析>>

同步练习册答案