精英家教网 > 初中数学 > 题目详情

【题目】阅读并补充下面推理过程:
(1)如图1,已知点A是BC外一点,连接AB,AC.求∠BAC+∠B+∠C的度数. 解:过点A作ED∥BC,所以∠B= ,∠C=
又因为∠EAB+∠BAC+∠DAC=180°.
所以∠B+∠BAC+∠C=180°.
(2)如图2,已知AB∥ED,求∠B+∠BCD+∠D的度数.
(3)已知AB∥CD,点C在点D的右侧,∠ADC=70°,BE平分∠ABC,DE平分∠ADC,BE,DE所在的直线交于点E,点E在AB与CD两条平行线之间. Ⅰ.如图3,点B在点A的左侧,若∠ABC=60°,则∠BED的度数为 °.
Ⅱ.如图4,点B在点A的右侧,且AB<CD,AD<BC.若∠ABC=n°,则∠BED的度数为 °.(用含n的代数式表示)

【答案】
(1)解:∵ED∥BC,∴∠B=∠EAD,∠C=∠DAE,

故答案为:∠EAD,∠DAE;


(2)解:过C作CF∥AB,

∵AB∥DE,

∴CF∥DE,

∴∠D=∠FCD,

∵CF∥AB,

∴∠B=∠BCF,

∵∠BCF+∠BCD+∠DCF=360°,

∴∠B+∠BCD+∠D=360°,


(3)Ⅰ.如图2,过点E作EF∥AB,

∵AB∥CD,

∴AB∥CD∥EF,

∴∠ABE=∠BEF,∠CDE=∠DEF,

∵BE平分∠ABC,DE平分∠ADC,∠ABC=60°,∠ADC=70°,

∴∠ABE= ∠ABC=30°,∠CDE= ∠ADC=35°,

∴∠BED=∠BEF+∠DEF=30°+35°=65°;

故答案为:65;

Ⅱ.如图3,过点E作EF∥AB,

∵BE平分∠ABC,DE平分∠ADC,∠ABC=n°,∠ADC=70°

∴∠ABE= ∠ABC= n°,∠CDE= ∠ADC=35°

∵AB∥CD,

∴AB∥CD∥EF,

∴∠BEF=180°﹣∠ABE=180°﹣ n°,∠CDE=∠DEF=35°,

∴∠BED=∠BEF+∠DEF=180°﹣ n°+35°=215°﹣ n°.

故答案为:215°﹣ n.


【解析】(1)根据平行线的性质即可得到结论;(2)过C作CF∥AB根据平行线的性质得到∠D=∠FCD,∠B=∠BCF,然后根据已知条件即可得到结论;(3)Ⅰ.过点E作EF∥AB,然后根据两直线平行内错角相等,即可求∠BED的度数; Ⅱ.∠BED的度数改变.过点E作EF∥AB,先由角平分线的定义可得:∠ABE= ∠ABC= n°,∠CDE= ∠ADC=35°,然后根据两直线平行内错角相等及同旁内角互补可得:∠BEF=180°﹣∠ABE=180°﹣ n°,∠CDE=∠DEF=35°,进而可求∠BED=∠BEF+∠DEF=180°﹣ n°+35°=215°﹣ n°.
【考点精析】掌握平行线的性质是解答本题的根本,需要知道两直线平行,同位角相等;两直线平行,内错角相等;两直线平行,同旁内角互补.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】若二次函数yax2bx+5a≠5)的图象与x轴交于(10),则ba+2015的值是______

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】下列说话正确的是(  )

A. 4的算术平方根是±2 B. 负数一定没有平方根

C. 平方根等于它本身的数有01 D. 0.9的算术平方根是0.3

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】顺次连接一个四边形的各边中点,得到一个矩形,则下列四边形中:①平行四边形;②菱形;③矩形;④对角线互相垂直的四边形.满足条件的四边形是______(把你认为正确的序号填在横线上)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,正方形ABCD中,AB=6,点E在边CD上,且CE=2DE.将ADE沿AE对折至AFE,延长EF交边BC于点G,连结AG、CF.下列结论:①ABG≌△AFG;②BG=GC;③EG=DE+BG;④AGCF;⑤S△FGC=3.6.其中正确结论的个数是(

A.2 B.3 C.4 D.5

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】二次函数y=-3(x-2)2+1的对称轴是_____.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知直线l1∥l2 , 直线l3和直线l1、l2交于点C和D,点P是直线l3上一动点
(1)如图1,当点P在线段CD上运动时,∠PAC,∠APB,∠PBD之间存在什么数量关系?请你猜想结论并说明理由.
(2)当点P在C、D两点的外侧运动时(P点与点C、D不重合,如图2和图3),上述(1)中的结论是否还成立?若不成立,请直接写出∠PAC,∠APB,∠PBD之间的数量关系,不必写理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】抛物线y=(x223y轴的交点坐标为_____

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】若 m+n+3的算术平方根, m+2n的立方根,则B-A的立方根是(
A.1
B.-1
C.0
D.无法确定

查看答案和解析>>

同步练习册答案