【题目】如图,正方形ABCD中,AB=6,点E在边CD上,且CE=2DE.将△ADE沿AE对折至△AFE,延长EF交边BC于点G,连结AG、CF.下列结论:①△ABG≌△AFG;②BG=GC;③EG=DE+BG;④AG∥CF;⑤S△FGC=3.6.其中正确结论的个数是( )
A.2 B.3 C.4 D.5
【答案】D.
【解析】
试题分析:∵正方形ABCD的边长为6,CE=2DE,∴DE=2,EC=4,∵把△ADE沿AE折叠使△ADE落在△AFE的位置,∴AF=AD=6,EF=ED=2,∠AFE=∠D=90°,∠FAE=∠DAE,在Rt△ABG和Rt△AFG中,∵AB=AF,AG=AG,∴Rt△ABG≌Rt△AFG(HL),∴GB=GF,∠BAG=∠FAG,∴∠GAE=∠FAE+∠FAG=∠BAD=45°,所以①正确;
设BG=x,则GF=x,C=BC﹣BG=6﹣x,在Rt△CGE中,GE=x+2,EC=4,CG=6﹣x,∵,∴,解得x=3,∴BG=3,CG=6﹣3=3,∴BG=CG,所以②正确;
∵EF=ED,GB=GF,∴GE=GF+EF=BG+DE,所以③正确;
∵GF=GC,∴∠GFC=∠GCF,又∵Rt△ABG≌Rt△AFG,∴∠AGB=∠AGF,而∠BGF=∠GFC+∠GCF,∴∠AGB+∠AGF=∠GFC+∠GCF,∴∠AGB=∠GCF,∴CF∥AG,所以④正确;
过F作FH⊥DC.∵BC⊥DH,∴FH∥GC,∴△EFH∽△EGC,∴,EF=DE=2,GF=3,∴EG=5,∴△EFH∽△EGC,∴相似比为:=,∴S△FGC=S△GCE﹣S△FEC=×3×4﹣×4×(×3)=3.6,所以⑤正确.
故正确的有①②③④⑤,故选D.
科目:初中数学 来源: 题型:
【题目】填写推理理由: 如图,CD∥EF,∠1=∠2,求证:∠3=∠ACB.
证明:∵CD∥EF,
∴∠DCB=∠2
∵∠1=∠2,∴∠DCB=∠1.
∴GD∥CB .
∴∠3=∠ACB .
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】阅读并补充下面推理过程:
(1)如图1,已知点A是BC外一点,连接AB,AC.求∠BAC+∠B+∠C的度数. 解:过点A作ED∥BC,所以∠B= ,∠C= .
又因为∠EAB+∠BAC+∠DAC=180°.
所以∠B+∠BAC+∠C=180°.
(2)如图2,已知AB∥ED,求∠B+∠BCD+∠D的度数.
(3)已知AB∥CD,点C在点D的右侧,∠ADC=70°,BE平分∠ABC,DE平分∠ADC,BE,DE所在的直线交于点E,点E在AB与CD两条平行线之间. Ⅰ.如图3,点B在点A的左侧,若∠ABC=60°,则∠BED的度数为 °.
Ⅱ.如图4,点B在点A的右侧,且AB<CD,AD<BC.若∠ABC=n°,则∠BED的度数为 °.(用含n的代数式表示)
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com