如图,已知抛物线经过A(1,0),B(0,3),C(-3,0)三点.
(1)求抛物线对应的函数关系式;
(2)动点Q从点O出发,以每秒1个单位长度的速度在线段OA上运动,同时动点
M从O点出发以每秒
3个单位长度的速度在线段OB上运动,过点Q作x轴的垂线交线段AB于点N,交抛物线于点P,设运动的时间为t秒.
①当t为何值时,四边形OMPQ为矩形;
②△AON能否为等腰三角形?若能,求出t的值;若不能,请说明理由.
![]()
科目:初中数学 来源: 题型:
如图,点A在x轴上,OA=4,将线段OA绕点O顺时针旋转120°至
OB的位置.
(1)求点B的坐标;
(2)求过点A、O、B的抛物线的解析式;
(3)在此抛物线的对称轴上,是否存在点P,使得以点P、O、B为顶点的三角形
是等腰三角形?若存在,求出点P坐标;若不存在,说明理由.
![]()
查看答案和解析>>
科目:初中数学 来源: 题型:
如图,点P在双曲线y=
(x>0)上,⊙P与两坐标轴都相切,点E为y轴负半轴上的一点,
过点P作PF⊥PE交x轴于点F,若OF-OE=8,则k的值是 .![]()
查看答案和解析>>
科目:初中数学 来源: 题型:
某市为了增强学生体质,全面实施“学生饮用奶”营养工程.某品牌牛奶供应商提供了原味、草莓味、菠萝味、香橙味、核桃味五种口味的牛奶提供学生饮用.某中学为了了解学生对不同口味牛奶的喜好,对全校订购牛奶的学生进行了随机调查(每盒各种口味牛奶的体积相同),绘制了如图两张不完整的人数统计图:
(1)本次被调查的学生有 名;![]()
(2)补全上面的条形统计图1,并计算出喜好“菠萝味”牛奶的学生人数在扇形统计图2中所占圆心角的度数;
(3)该校共有2400名学生订购了该品牌的牛奶,牛奶供应商每天只为每名订购牛奶的学生配送一盒牛奶.要使学生每天都喝到自己喜好的口味的牛奶,牛奶供应商每天送往该校的牛奶中,草莓味要比原味多送多少盒?
查看答案和解析>>
科目:初中数学 来源: 题型:
如图,点A是反比例函数y=
(x>0)的图象上任意一点,AB∥x轴交反比例函数y=-
的图象于点B,以AB为边作□ABC
D,其中C、D在x轴上,则S□ABCD为( )
A.2 B.3 C.4 D.5![]()
查看答案和解析>>
科目:初中数学 来源: 题型:
如图17,有一种动画程序,屏幕上正方形ABCD是黑色区域(含正方形边界),其中A(1,1),B(2,1),C(2,2),D(1,2),用信号枪沿直线y=﹣2x+b发射信号,当信号遇到黑色区域时,区域便由黑变白,则能够使黑色区域变白的b的取值范围为 .
![]()
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com