【题目】(1)问题发现:如图①,正方形AEFG的两边分别在正方形ABCD的边AB和AD上,连接CF.
①写出线段CF与DG的数量关系;
②写出直线CF与DG所夹锐角的度数.
(2)拓展探究:
如图②,将正方形AEFG绕点A逆时针旋转,在旋转的过程中,(1)中的结论是否仍然成立,请利用图②进行说明.
(2)问题解决
如图③,△ABC和△ADE都是等腰直角三角形,∠BAC=∠DAE=90°,AB=AC=4,O为AC的中点.若点D在直线BC上运动,连接OE,则在点D的运动过程中,线段OE的长的最小值.(直接写出结果)
【答案】(1)①易得CF=DG;②45;
(2) (1)中的结论仍然成立,证明见详解;
(3).
【解析】
(1)①易得CF=DG;
②45;
(2) 连接AC、AF,在正方形ABCD中,可得△CAF∽DAG,=,CF=DG,
在△CHD中,∠CHD=180-135=45,(1)中的结论是否仍然成立;
(3)OE⊥CE时,OE最短,此时OE=CE,△OEC为等腰直角三角形,OC=AC=2,可得OE的值.
(1)①易得CF=DG;
②45;
(2)①
连接AC、AF,在正方形ABCD中,延长CF交DG与H点,
∠CAD=∠BCD=45,
设AD=CD=a,易得AC=a=AD,
同理在正方形AEFG中,∠FAG=45,AF=AG,
∠CAD=∠FAG, ∠CAD-∠2=∠FAG-∠2,
∠1=∠3
又
△CAF∽DAG,
=,CF=DG;
②由△CAF∽DAG,∠4=∠5,
∠ACD=∠4+∠6=45, ∠5+∠6=45,
∠5+∠6+∠7=135,
在△CHD中,∠CHD=180-135=45,
(1)中的结论是否仍然成立
(3)
由∠BAC=∠DAE=90,可得∠BAD=∠CAE,又AB=AC,AD=AE,
可得△BAD≌△CAE,
∠ACE=∠ABC=45,
又∠ACB=45,∠BCE=90,即CE⊥BC,
根据点到直线的距离垂线段最短,
OE⊥CE时,OE最短,此时OE=CE,△OEC为等腰直角三角形,
OC=AC=2,
由等腰直角三角形性质易得,OE=,
OE的最小值为.
科目:初中数学 来源: 题型:
【题目】如图,长方形广告牌架在楼房顶部,已知CD=2m,经测量得到∠CAH=37°,∠DBH=60°,AB=10m,求GH的长.(参考数据:tan37°≈0.75, ≈1.732,结果精确到0.1m)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系xOy中,边长为2的正方形OABC的顶点A、C分别在x轴正半轴、y轴的负半轴上,二次函数y=(xh)2+k的图象经过B、C两点.
(1)求该二次函数的顶点坐标;
(2)结合函数的图象探索:当y>0时x的取值范围;
(3)设m<,且A(m,y1),B(m+1,y2)两点都在该函数图象上,试比较y1、y2的大小,并简要说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】有两个信封,每个信封内各装有四张完全相同的卡片,其中一个信封内的四张卡片上分别写有1,2,3,4四个数,另一个信封内的四张卡片上分别写有5,6,7,8四个数.甲,乙两人商定了一个游戏,规则是:从这两个信封中各随机抽取一张卡片,然后把卡片上的两个数相乘,如果得到的积大于16,则甲获胜,否则乙获胜.
(1)请你通过列表(或画树状图)计算甲获胜的概率;
(2)你认为这个游戏公平吗?为什么?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知二次函数与反比例函数()的图象都经过点A(1,m).
(1)求反比例函数的表达式;
(2)当二次函数与反比例函数的值都随x的增大而减小时,求x的取值范围.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知BC是⊙O的直径,点D是BC延长线上一点,AB=AD,AE是⊙O的弦,∠AEC=30°.
(1)求证:直线AD是⊙O的切线;
(2)若AE⊥BC,垂足为M,⊙O的半径为4,求AE的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】同学们,在我们进入高中以后,将还会学到下面三角函数公式:
sin (α-β)=sinαcosβ-cosαsinβ,
cos (α-β)=cosαcosβ+sinαsinβ
例:sin 15°=sin (45°-30°)=sin 45°cos 30°-cos 45°sin 30°=
(1)试仿照例题,求出cos 15°的准确值;
(2)我们知道,tanα=,试求出tan 15°的准确值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,—抛物线y=﹣a(x+1)(x﹣3)(a>0)与x轴交于A、B两点,与y轴交于点C.抛物线的对称轴与x轴交于点E,过点C作x轴的平行线,与抛物线交于点D,连接DE,延长DE交y轴于点F,连接AD、AF.
(1)点A的坐标为____________,点B的坐标为_________ ;
(2)判断四边形ACDE的形状,并给出证明;
(3)当a为何值时,△ADF是直角三角形?
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com