【题目】如图,△ABC的角平分线CD、BE相交于F,∠A=90°,EG∥BC,且CG⊥EG于G,下列结论:
①∠CEG=2∠DCB;②∠DFB= ∠CGE;③∠ADC=∠GCD;④CA平分∠BCG.其中正确的个数是( )
A. 1 B. 2 C. 3 D. 4
【答案】C
【解析】分析:根据平行线、角平分线、垂直的性质及三角形内角和定理依次判断即可得出答案.
详解:①∵EG∥BC,∴∠CEG=∠ACB.又∵CD是△ABC的角平分线,∴∠CEG=∠ACB=2∠DCB,故正确;
④无法证明CA平分∠BCG,故错误;
③∵∠A=90°,∴∠ADC+∠ACD=90°.∵CD平分∠ACB,∴∠ACD=∠BCD,∴∠ADC+∠BCD=90°.
∵EG∥BC,且CG⊥EG,∴∠GCB=90°,即∠GCD+∠BCD=90°,∴∠ADC=∠GCD,故正确;
②∵∠EBC+∠ACB=∠AEB,∠DCB+∠ABC=∠ADC,∴∠AEB+∠ADC=90°+(∠ABC+∠ACB)=135°,∴∠DFE=360°﹣135°﹣90°=135°,∴∠DFB=45°=∠CGE,∴∠CGE=2∠DFB,∴∠DFB=∠CGE,故正确.
故选C.
科目:初中数学 来源: 题型:
【题目】如图,已知△中,,,点是上一点,且,点在边的延长线上,平分,说明∥的理由.
解:因为点在边的延长线上(已知),
所以(______________________).
因为(已知),
所以(等式性质).
因为平分(已知),
所以(___________________).
因为(_________________________________),
所以(等量代换).
所以∥(____________________________________).
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】问题背景
如图,在正方形的内部,作,根据三角形全等的条件,易得≌≌≌,从而得到四边形是正方形.
类比探究
如图,在正的内部,作, , , 两两相交于, , 三点(, , 三点不重合).
(), , 是否全等?如果是,请选择其中一对进行证明.
()是否为正三角形?请说明理由.
()进一步探究发现,图中的的三边存在一定的等量关系,设, , ,请探索, , 满足的等量关系.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】下列调查中,适宜采用全面调查方式的是( )
A.调查热播电视剧《人民的名义》的收视率
B.调查广州市民对皮影表演艺术的喜爱程度
C.调查某班学生对社会主义核心价值观的知晓率
D.调查我国首艘货运飞船“天舟一号”的零部件质量
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】小明和小丽在操场上玩耍,小丽突然高兴地对小明说:“我踩到你的‘脑袋’了.”如图即表示此时小明和小丽的位置.
(1)请画出此时小丽在阳光下的影子;
(2)若已知小明的身高为1.60 m,小明和小丽之间的距离为2 m,而小丽的影子长为1.75 m,求小丽的身高.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com