【题目】如图,点
在直线
上,过点
作
轴交直线
于点
,以点
为直角顶点,
为直角边在
的右侧作等腰直角
,再过点
作
轴,分别交直线
和
于
,
两点,以点
为直角顶点,
为直角边在
的右侧作等腰直角
按此规律进行下去,则等腰直角
的面积为_______,等腰直角
的面积为______.
![]()
【答案】
,
【解析】
先根据点A1的坐标及A1B1∥y轴求出B1的坐标,进而得到A1B1的长及△A1B1C1的面积,再根据A2的坐标及A2B2∥y轴求出B2的坐标,进而得到A2B2的长及△A2B2C2的面积,根据变换规律A3B3的长得到△A3B3C3的面积,再求出AnBn的长得到△AnBnCn的面积即可.
∵A1(2,2),A1B1∥y轴交直线
于点B1,
∴B1(2,1),
∴A1B1=2-1=1,
∴△A1B1C1的面积=![]()
1
1=
,
∵A1C1= A1B1=1,
∴A2(3,3),
∵A2B2∥y轴交直线
于点B2,
∴B2(3,
),
∴A2B2=3-
=
,
∴△A2B2C2的面积=![]()
![]()
![]()
![]()
=
,
∵A2C2= A2B2=
,
∴A3(
,
),
∵A3B3∥y轴交直线
于点B3,
∴B3(
,
),
∴A3B3=
-
=
,
∴△A3B3C3的面积=![]()
![]()
![]()
![]()
=
,
∵△A1B1C1的面积=
,
△A2B2C2的面积=
=
,
△A3B3C3的面积=![]()
,
以此类推,△AnBnCn的面积=
,
故答案为:
,
.
科目:初中数学 来源: 题型:
【题目】二次函数y=ax2+bx+c(a≠0)的部分图象如图所示,图象过点(﹣1,0),对称轴为直线x=2,下列结论:(1)4a+b=0;(2)9a+c>3b;(3)8a+7b+2c>0;(4)若点A(﹣3,y1)、点B(﹣
,y2)、点C(
,y3)在该函数图象上,则y1<y3<y2;(5)若方程a(x+1)(x﹣5)=﹣3的两根为x1和x2,且x1<x2,则x1<﹣1<5<x2.其中正确的结论有( )
![]()
A. 2个 B. 3个 C. 4个 D. 5个
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知抛物线y=ax2+c与x轴交于A、B两点,顶点为C,点P在抛物线上,且P(1,﹣3),B(4,0)
(1)点A的坐标是 ;
(2)求该抛物线的解析式;
(3)直接写出该抛物线的顶点C的坐标.
![]()
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,⊙O是△ABC的外接圆, AD是⊙O的直径,BC的延长线于过点A的直线相交于点E,且∠B=∠EAC.
(1)求证:AE是⊙O的切线;
(2)过点C作CG⊥AD,垂足为F,与AB交于点G,若AGAB=36,tanB=
,求DF的值
![]()
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某超市对今年“元旦”期间销售A、B、C三种品牌的绿色鸡蛋情况进行了统计,并绘制如图所示的扇形统计图和条形统计图.根据图中信息解答下列问题:
(1)该超市“元旦”期间共销售 个绿色鸡蛋,A品牌绿色鸡蛋在扇形统计图中所对应的扇形圆心角是 度;
(2)补全条形统计图;
(3)如果该超市的另一分店在“元旦”期间共销售这三种品牌的绿色鸡蛋1500个,请你估计这个分店销售的B种品牌的绿色鸡蛋的个数?
![]()
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知△ABC中,AB=6,AC=BC=5,将△ABC折叠,使点A落在BC边上的点D处,折痕为EF(点E.F分别在边AB、AC上).当以B.E.D为顶点的三角形与△DEF相似时,BE的长为_____.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某药厂销售部门根据市场调研结果,对该厂生产的一种新型原料药未来两年的销售进行预测,井建立如下模型:设第t个月该原料药的月销售量为P(单位:吨),P与t之间存在如图所示的函数关系,其图象是函数P=
(0<t≤8)的图象与线段AB的组合;设第t个月销售该原料药每吨的毛利润为Q(单位:万元),Q与t之间满足如下关系:Q=![]()
(1)当8<t≤24时,求P关于t的函数解析式;
(2)设第t个月销售该原料药的月毛利润为w(单位:万元)
①求w关于t的函数解析式;
②该药厂销售部门分析认为,336≤w≤513是最有利于该原料药可持续生产和销售的月毛利润范围,求此范围所对应的月销售量P的最小值和最大值.
![]()
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,四边形ABCD中,∠BAD=90°,∠DCB=90°,E、F分别是BD、AC的中点.
(1)请你猜想EF与AC的位置关系,并给予证明;
(2)当AC=16,BD=20时,求EF的长.
![]()
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图1,在平面直角坐标系中,直线l:y=x+2与x轴交于点A,与y轴交于点B,点C在x轴的正半轴上,且OC=2OB.
(1)点F是直线BC上一动点,点M是直线AB上一动点,点H为x轴上一动点,点N为x轴上另一动点(不与H点重合),连接OF、FH、FM、FN和MN,当OF+FH取最小值时,求△FMN周长的最小值;
(2)如图2,将△AOB绕着点B逆时针旋转90°得到△A′O′B,其中点A对应点为A′,点O对应点为O',连接CO',将△BCO'沿着直线BC平移,记平移过程中△BCO'为△B'C'O″,其中点B对应点为B',点C对应点为C',点O′对应点为O″,直线C'O″与x轴交于点P,在平移过程中,是否存在点P,使得△O″PC为等腰三角形?若存在请直接写出点P的坐标;若不存在,请说明理由.
![]()
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com