20£®Á¬½ÓAB£¬Ö±ÏßABÓëxÖá½»ÓÚµãC£¬ÓëyÖá½»ÓÚµãD£¬Æ½ÃæÄÚÓÐÒ»µãE£¨3£¬1£©£¬Ö±ÏßBEÓëxÖá½»ÓÚµãF£®Ö±ÏßABµÄ½âÎöʽ¼Ç×÷y1=kx+b£¬Ö±ÏßBE½âÎöʽ¼Ç×÷y2=mx+t£®Çó£º
£¨1£©Ö±ÏßABµÄ½âÎöʽ¡÷BCFµÄÃæ»ý£»
£¨2£©µ±x£¾2ʱ£¬kx+b£¾mx+t£»
µ±x£¼2ʱ£¬kx+b£¼mx+t£»
µ±x=2ʱ£¬kx+b=mx+t£»
£¨3£©ÔÚxÖáÉÏÓÐÒ»¶¯µãH£¬Ê¹µÃ¡÷OBHΪµÈÑüÈý½ÇÐΣ¬ÇóHµÄ×ø±ê£®

·ÖÎö £¨1£©¸ù¾Ý¹Û²ìͼÏó¿ÉÒÔÕÒ³öµãB¡¢C¡¢DµÄ×ø±ê£¬¸ù¾Ý´ý¶¨ÏµÊý·¨¼´¿ÉÇó³öÖ±ÏßAB¡¢BEµÄ½âÎöʽ£¬Áîy2=0¼´¿ÉÇó³öµãFµÄ×ø±ê£¬½áºÏÈý½ÇÐεÄÃæ»ý¹«Ê½¼´¿ÉµÃ³ö½áÂÛ£»
£¨2£©µ±Ö±ÏßABµÄͼÏóÔÚÖ±ÏßBEͼÏóÉÏ·½Ê±£¬ÓÐkx+b£¾mx+t£»µ±Ö±ÏßABµÄͼÏóÔÚÖ±ÏßBEͼÏóÏ·½Ê±£¬ÓÐkx+b£¼mx+t£»¶þÕßÏཻʱ£¬ÓÐkx+b=mx+t£®½áºÏͼÏ󼴿ɵóö½áÂÛ£»
£¨3£©ÉèµãHµÄ×ø±êΪ£¨n£¬0£©£¬ÓÃÁ½µã¼äµÄ¾àÀ빫ʽÕÒ³öOB¡¢OH¡¢BHµÄ³¤¶È£¬½áºÏ¡÷OBHΪµÈÑüÈý½ÇÐεÄÈýÖÖÇé¿ö£¬¼´¿ÉÇó³önµÄÖµ£®

½â´ð ½â£º£¨1£©¹Û²ìº¯ÊýͼÏó¿ÉÖª£º
µãC£¨-4£¬0£©£¬µãD£¨0£¬2£©£¬µãB£¨2£¬3£©£¬
½«C¡¢Dµã×ø±ê´úÈëÖ±ÏßABµÄ½âÎöʽÖУ¬µÃ$\left\{\begin{array}{l}{0=-4k+b}\\{2=b}\end{array}\right.$£¬
½âµÃ£º$\left\{\begin{array}{l}{k=\frac{1}{2}}\\{b=2}\end{array}\right.$£®
¡àÖ±ÏßABµÄ½âÎöʽΪy1=$\frac{1}{2}$x+2£®
½«µãB£¨2£¬3£©£¬E£¨3£¬1£©´úÈëµ½Ö±ÏßBEµÄ½âÎöʽÖУ¬µÃ$\left\{\begin{array}{l}{3=2m+t}\\{1=3m+t}\end{array}\right.$£¬
½âµÃ£º$\left\{\begin{array}{l}{m=-2}\\{t=7}\end{array}\right.$£®
¡àÖ±ÏßBEµÄ½âÎöʽΪy2=-2x+7£®
Áîy2=0£¬ÔòÓÐ-2x+7=0£¬½âµÃm=$\frac{7}{2}$£¬
¼´µãFµÄ×ø±êΪ£¨$\frac{7}{2}$£¬0£©£®
¡àCF=$\frac{7}{2}$-£¨-4£©=$\frac{15}{2}$£¬
¡à¡÷BCFµÄÃæ»ýS=$\frac{1}{2}$¡Á3CF=$\frac{1}{2}$¡Á3¡Á$\frac{15}{2}$=$\frac{45}{4}$£®
£¨2£©½áºÏº¯ÊýͼÏó¿ÉÖª£º
µ±x£¾2ʱ£¬kx+b£¾mx+t£»µ±x£¼2ʱ£¬kx+b£¼mx+t£»µ±x=2ʱ£¬kx+b=mx+t£®
¹Ê´ð°¸Îª£º£¾2£»£¼2£»=2£®
£¨3£©ÉèµãHµÄ×ø±êΪ£¨n£¬0£©£®
¡ßµãO£¨0£¬0£©£¬µãB£¨2£¬3£©£¬
¡àOB=$\sqrt{£¨2-0£©^{2}+£¨3-0£©^{2}}$=$\sqrt{13}$£¬OH=|n|£¬BH=$\sqrt{£¨n-2£©^{2}+£¨0-3£©^{2}}$£®
¡÷OBHΪµÈÑüÈý½ÇÐηÖÈýÖÖÇé¿ö£º
¢Ùµ±OB=OHʱ£¬¼´$\sqrt{13}$=|n|£¬½âµÃ£ºn=¡À$\sqrt{13}$£¬
´ËʱµãHµÄ×ø±êΪ£¨-$\sqrt{13}$£¬0£©»ò£¨$\sqrt{13}$£¬0£©£»
¢Úµ±OB=BHʱ£¬¼´$\sqrt{13}$=$\sqrt{£¨n-2£©^{2}+£¨0-3£©^{2}}$£¬½âµÃ£ºn=0£¨ÉáÈ¥£©£¬»òn=4£®
´ËʱµãHµÄ×ø±êΪ£¨4£¬0£©£»
¢Ûµ±OH=BHʱ£¬¼´|n|=$\sqrt{£¨n-2£©^{2}+£¨0-3£©^{2}}$£¬½âµÃ£ºn=$\frac{13}{4}$£®
´ËʱµãHµÄ×ø±êΪ£¨$\frac{13}{4}$£¬0£©£®
×ÛÉÏ¿ÉÖª£ºµãHµÄ×ø±êΪ£¨-$\sqrt{13}$£¬0£©¡¢£¨$\sqrt{13}$£¬0£©¡¢£¨4£¬0£©»ò£¨$\frac{13}{4}$£¬0£©£®

µãÆÀ ±¾Ì⿼²éÁËÒ»´Îº¯ÊýµÄÓ¦Óᢴý¶¨ÏµÊý·¨Çóº¯Êý½âÎöʽ¡¢½áºÏº¯ÊýͼÏó½â¾ö²»µÈʽ¡¢Á½µã¼äµÄ¾àÀ빫ʽÒÔ¼°µÈÑüÈý½ÇÐεÄÐÔÖÊ£¬½âÌâµÄ¹Ø¼üÊÇ£º£¨1£©´ý¶¨ÏµÊý·¨Çóº¯Êý½âÎöʽ£»£¨2£©½áºÏº¯ÊýͼÏó½â²»µÈʽ£»£¨3£©·ÖµÈÑüÈý½ÇÐεÄÈýÖÖÇé¿ö¿¼ÂÇ£®±¾ÌâÊôÓÚÖеµÌ⣬ÄѶȲ»´ó£¬½â¾ö¸ÃÀàÐ͵ÄÌâĿʱ£¬´úÈëµãµÄ×ø±êÕÒ³ö¹ØÓÚδ֪Á¿µÄ·½³Ì£¨»ò·½³Ì×飩Êǹؼü£®

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

10£®Èçͼ£¬ÓÐÒ»¸ö³¤·½ÌåµÄ³¤£¬¿í£¬¸ß·Ö±ðÊÇ 6£¬4£¬5£¬ÔÚµ×ÃæA´¦ÓÐÒ»Ö»ÂìÒÏ£¬ËüÏë³Ôµ½³¤·½ÌåÉÏÃæB´¦µÄʳÎÐèÒªÅÀÐеÄ×î¶Ì·³ÌÊǶàÉÙ£¿

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

11£®Ò»¸öµÈÑüÈý½ÇÐεĶ¥½ÇΪ110¡ã£¬Ôòµ×½ÇÊÇ£¨¡¡¡¡£©
A£®10¡ãB£®30¡ãC£®40¡ãD£®35¡ã

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

8£®Èçͼ£¬DÊÇ¡÷ABCµÄ±ßBCÉÏÈÎÒâÒ»µã£¬E¡¢F·Ö±ðÊÇÏß¶ÎAD¡¢CEµÄÖе㣬ÇÒ¡÷ABCµÄÃæ»ýΪ20cm2£¬Çó¡÷BEFµÄÃæ»ý£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

15£®½â·½³Ì£º$\frac{x-1}{3}-1=\frac{3-x}{2}-2$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

5£®Ëãʽ£º£¨-4£©-2µÄ¼ÆËã½á¹ûÊÇ£¨¡¡¡¡£©
A£®-16B£®$\frac{1}{16}$C£®16D£®$-\frac{1}{16}$

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

12£®ÏÂÁи÷ʽ-3x£¬$\frac{x+y}{x-y}$£¬$\frac{xy-y}{3}$£¬-$\frac{3}{10}$£¬$\frac{2}{5+y}$£¬$\frac{3}{x}$£¬$\frac{x}{xy}$ÖУ¬·ÖʽµÄ¸öÊýΪ£¨¡¡¡¡£©
A£®1B£®2C£®3D£®4

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

9£®|-3|-£¨$\frac{1}{2}$£©-1+¦Ð0-2cos60¡ã£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

10£®Èôx¡Ùy£¬Ôòx4+y4£¾x3y+xy3£¨Ìî¡°£¾¡±»ò¡°£¼¡±£©

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸