精英家教网 > 初中数学 > 题目详情

【题目】如图,已知△ABC,AB=AC,将△ABC沿边BC翻折,得到的△DBC与原△ABC拼成四边形ABDC.求证:四边形ABDC是菱形.

【答案】解:由翻转变换的性质可知,BA=BD,CA=CD,

∵AB=AC,

∴AB=BD=DC=CA,

∴四边形ABDC是菱形


【解析】由翻转变换的性质可知,BA=BD,CA=CD,由AB=AC,得到AB=BD=DC=CA,所以四边形ABDC是菱形.
【考点精析】本题主要考查了等腰三角形的性质和菱形的判定方法的相关知识点,需要掌握等腰三角形的两个底角相等(简称:等边对等角);任意一个四边形,四边相等成菱形;四边形的对角线,垂直互分是菱形.已知平行四边形,邻边相等叫菱形;两对角线若垂直,顺理成章为菱形才能正确解答此题.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】综合题
(1)感知:如图①,四边形ABCD、CEFG均为正方形.易知BE=DG.

(2)探究:如图②,四边形ABCD、CEFG均为菱形,且∠A=∠F.求证:BE=DG.

(3)如图③,四边形ABCD、CEFG均为菱形,点E在边AD上,点G在AD的延长线上.若AE=3ED,∠A=∠F,△EBC的面积为8,则菱形CEFG的面积为

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】2017年5月14日15日,“一带一路”国际合作高峰坛在北京行,本届坛期间,中国同30多个国家签署经贸合作协议,某厂准备生产甲、乙两种商品共8万件销“一带一路”沿线国家和地区,已知2件甲种商品与3件乙种商品的销售收入相同,3件甲种商品比2件乙种商品的销售收入1500元.

(1)甲商品与乙种商品的销售单价各多少元?

(2)若甲、乙两种商品的销售总收入不低于5400万元,则至少销售甲种商品多少万件?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,平面直角坐标系中,直线l:y=﹣ x+ 分别交x轴,y轴于A,B两点,点C在x轴负半轴上,且∠ACB=30°.

(1)求A,C两点的坐标.
(2)若点M从点C出发,以每秒1个单位长度的速度沿射线CB运动,连接AM,设△ABM的面积为S,点M的运动时间为t,求出S关于t的函数关系式,并写出自变量的取值范围.
(3)点P是y轴上的点,在坐标平面内是否存在点Q,使以A,B,P,Q为顶点的四边形是菱形?若存在,请直接写出Q点的坐标;若不存在,说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】为鼓励节约用水,某市自来水公司对居民用水采用以户为单位分段计费办法收费,即一个月用水10t以内(包含10t)的用户,收水费a元/t,一月用水超过10t的用户,超出的部分按b元/t(b>a)收费,设一户居民用水x t,应收水费y元,y与x之间的函数关系式如图所示:按上述分段收费标准,小兰家3月份和4月份分别交水费29.1元和20.8元,则小兰家4月份比3月份节约用水吨.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】根据题意,解答下列问题:

(1)如图①,已知直线y=2x+4与x轴、y轴分别交于A、B两点,求线段AB的长;
(2)如图②,类比(1)的求解过程,请你通过构造直角三角形的方法,求出两点M(3,4),N(﹣2,﹣1)之间的距离;
(3)如图③,P1(x1 , y1),P2(x2 , y2)是平面直角坐标系内的两点,请你利用图③构造直角三角形,并直接写出P1P2的长度(用含有x1 , x2 , y1 , y2的代数式表示).

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图为某城市部分街道示意图,四边形ABCD为正方形,点G在对角线BD上,GECD,GFBC,AD=1500m,小敏行走的路线为BAGE,小聪行走的路线为BADEF.若小敏行走的路程为3100m,则小聪行走的路程为 m.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】计算:(3x1)(x2=______

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】下列式子正确的(  )

A. x﹣(yz)=xyzB. a+b+c+d=﹣(ab)﹣(﹣cd

C. x+2y2zx2z+yD. ﹣(xy+z)=﹣xyz

查看答案和解析>>

同步练习册答案