精英家教网 > 初中数学 > 题目详情

已知⊙O1和⊙O2相交于A、B两点,过A的直线交两圆于C、D两点,过B的直线交两圆于E、F两点作业宝,连接DF、CE.
(1)说明CE∥DF;
(2)若G为CD的中点,说明CE=DF.

解:(1)在⊙O1中,∠C和∠ABE所对的都是弧AE
∴∠C=∠B
同理可在⊙O2中得出:∠D=∠B,
∴∠C=∠D
∴CE∥DF

(2)由(1)知:∠C=∠D,
在△CEG和△DFG中

∴△CEG≌△DFG(ASA)
∴CE=DF.
分析:(1)可根据圆周角定理来解.要证CE∥DF,关键是证明∠C=∠D,以∠ABE为中间值,根据所求的两个角与∠ABE在不同的圆中对应的圆弧相等来得出所求角相等,从而得出CE∥DF.
(2)可通过证明三角形CEG和FGD全等来得出结论,这两个三角形中已知的条件有:CG=GD,一组对顶角,只要再证得一组对应角相等即可得出两三角形全等,由(1)的平行线可知:∠C=∠D,这样就构成了两三角形全等的所有条件,便可得出CE=DF.
点评:本题主要考查了全等三角形的判定和圆周角定理,通过圆周角得出三角形全等是本题解题的关键.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

20、已知⊙O1和⊙O2相外切,它们的半径分别是1厘米和3厘米.那么半径是4厘米,且和⊙O1、⊙O2都相切的圆共有(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

16、已知⊙O1和⊙O2相内切,且⊙O1的半径为6cm,两圆的圆心距为3cm,则⊙O2的半径为
3或9
cm.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知⊙O1和⊙O2相外切,且它们的半径分别为1、2,则圆心距O1O2的长为
3
3

查看答案和解析>>

科目:初中数学 来源: 题型:

已知⊙O1和⊙O2相外切,它们的半径分别为2cm和3cm,则圆心距O1O2等于
5
5
cm.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知⊙O1和⊙O2相外切,O1O2=7,⊙O1的半径为4,则⊙O2的半径为
3
3

查看答案和解析>>

同步练习册答案