精英家教网 > 初中数学 > 题目详情

【题目】阅读理解:

我们把满足某种条件的所有点所组成的图形,叫做符合这个条件的点的轨迹.

例如:角的平分线是到角的两边距离相等的点的轨迹.

问题:如图1,已知EF为ABC的中位线,M是边BC上一动点,连接AM交EF于点P,那么动点P为线段AM中点.

理由:线段EF为ABC的中位线,EFBC,由平行线分线段成比例得:动点P为线段AM中点.

由此你得到动点P的运动轨迹是:

知识应用:

如图2,已知EF为等边ABC边AB、AC上的动点,连结EF;若AF=BE,且等边ABC的边长为8,求线段EF中点Q的运动轨迹的长.

拓展提高:

如图3,P为线段AB上一动点(点P不与点A、B重合),在线段AB的同侧分别作等边APC和等边PBD,连结AD、BC,交点为Q.

(1)求AQB的度数;

(2)若AB=6,求动点Q运动轨迹的长.

【答案】阅读理解:线段EF;知识应用:4;拓展提高:(1)120°;(2)

【解析】

试题分析:阅读理解:根据轨迹的定义可知,动点P的运动轨迹是线段EF.

知识应用:如图1中,作ABC的中位线MN,作EGAC交NM的延长线于G,EF与MN交于点Q′,GQ′E≌△NQ′F,推出Q、Q′重合即可解决问题.

拓展提高:如图2中,(1)只要证明APD≌△CPB,推出DQG=BPG=60°结论解决问题.(2)由(1)可知点P的运动轨迹是,设弧AB所在圆的圆心为O,Z 圆上任意取一点M,连接AM,BM,则M=60°,作OHAB于H,则AH=BH=3,OH=,OB=,利用弧长公式即可解决.

试题解析:阅读理解:根据轨迹的定义可知,动点P的运动轨迹是线段EF.

故答案为:线段EF.

知识应用:如图1中,作ABC的中位线MN,作EGAC交NM的延长线于G,EF与MN交于点Q′

∵△ABC是等边三角形,MN是中位线,AM=BM=AN=CN,AF=BE,EM=FN,MNBC,∴∠AMN=B=GME=60°,∵∠A=GEM=60°,∴△GEM是等边三角形,EM=EG=FN,在GQ′E和NQ′F中,∵∠GQE=NQF,G=FNQ,GE=FN∴△GQ′E≌△NQ′F,EQ′=FQ′,EQ=QF,′点Q、Q′重合,点Q在线段MN上,段EF中点Q的运动轨迹是线段MN,MN=BC=×8=4,线段EF中点Q的运动轨迹的长为4.

拓展提高:如图2中,(1)∵△APC,PBD都是等边三角形,AP=PC,PD=PB,APC=DPB=60°,∴∠APD=CPB,在APD和CPB中,AP=PC,APD=CPB,DP=BP∴△APD≌△CPB,∴∠ADP=CBP,设BC与PD交于点G,∵∠QGD=PGB,∴∠DQG=BPG=60°,∴∠AQB=180°﹣DQG=120°

(2)由(1)可知点P的运动轨迹是,设弧AB所在圆的圆心为O,Z 圆上任意取一点M,连接AM,BM,则M=60°,∴∠AOB=2M=120°,作OHAB于H,则AH=BH=3,OH=,OB=弧AB的长==动点Q运动轨迹的长

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,在△ABC中,AB=AC,AB的垂直平分线交AB于M,交AC于N.
(1)若∠ABC=70°,则∠MNA的度数是
(2)连接NB,若AB=8cm,△NBC的周长是14cm. ①求BC的长;
②在直线MN上是否存在P,使由P、B、C构成的△PBC的周长值最小?若存在,标出点P的位置并求△PBC的周长最小值;若不存在,说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】九年级一班5名女生进行体育测试,她们的成绩分别为70,80,85,75,85(单位:分),这次测试成绩的众数和中位数分别是(  )

A.79,85 B.80,79 C.85,80 D.85,85

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在平面直角坐标系中,点P(2,﹣4)关于原点对称的点的坐标是(  )

A. (﹣2,4) B. (2,4) C. (﹣2,﹣4) D. (﹣4,2)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】阅读下面材料:

小明遇到这样一个问题:如图1,△ABC中,AB=AC,点D在BC边上,∠DAB=∠ABD,BE⊥AD,垂足为E,求证:BC=2AE.

小明经探究发现,过点A作AF⊥BC,垂足为F,得到∠AFB=∠BEA,从而可证△ABF≌△BAE(如图2),使问题得到解决.

(1)根据阅读材料回答:△ABF与△BAE全等的条件是 AAS(填“SSS”、“SAS”、“ASA”、“AAS”或“HL”中的一个)

参考小明思考问题的方法,解答下列问题:

(2)如图3,△ABC中,AB=AC,∠BAC=90°,D为BC的中点,E为DC的中点,点F在AC的延长线上,且∠CDF=∠EAC,若CF=2,求AB的长;

(3)如图4,△ABC中,AB=AC,∠BAC=120°,点D、E分别在AB、AC边上,且AD=kDB(其中0<k<),∠AED=∠BCD,求的值(用含k的式子表示).

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某通讯公司推出①、②两种通讯收费方式供用户选择,其中一种有月租费,另一种无月租费,且两种收费方式的通讯时间x(分钟)与收费y(元)之间的函数关系如图所示.

(1)有月租费的收费方式是(填①或②),月租费是元;


(2)分别求出①、②两种收费方式中y与自变量x之间的函数关系式;
(3)请你根据用户通讯时间的多少,给出经济实惠的选择建议.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知直线y=﹣2x+8与x轴、y轴分别交于点A、C,以OA、OC为边在第一象限内作长方形OABC.

(1)求点A、C的坐标;
(2)将△ABC对折,使得点A的与点C重合,折痕交AB于点D,求直线CD的解析式;
(3)在(2)的条件下,坐标平面内是否存在点P(除点B外),使得△APC与△ABC全等?若存在,直接写出符合条件的点P的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】孔子出生于公元前551年,如果用-551年表示,则李白出生于公元后701年可表示

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如果∠α和∠β互补,且∠α>∠β,则下列表示∠β的余角的式子中:①90°﹣∠β;②∠α﹣90°;③ (∠α+∠β);④ (∠α﹣∠β).正确的有( )
A.4个
B.3个
C.2个
D.1个

查看答案和解析>>

同步练习册答案