【题目】孔子出生于公元前551年,如果用-551年表示,则李白出生于公元后701年可表示 .
科目:初中数学 来源: 题型:
【题目】阅读理解:
我们把满足某种条件的所有点所组成的图形,叫做符合这个条件的点的轨迹.
例如:角的平分线是到角的两边距离相等的点的轨迹.
问题:如图1,已知EF为△ABC的中位线,M是边BC上一动点,连接AM交EF于点P,那么动点P为线段AM中点.
理由:∵线段EF为△ABC的中位线,∴EF∥BC,由平行线分线段成比例得:动点P为线段AM中点.
由此你得到动点P的运动轨迹是: .
知识应用:
如图2,已知EF为等边△ABC边AB、AC上的动点,连结EF;若AF=BE,且等边△ABC的边长为8,求线段EF中点Q的运动轨迹的长.
拓展提高:
如图3,P为线段AB上一动点(点P不与点A、B重合),在线段AB的同侧分别作等边△APC和等边△PBD,连结AD、BC,交点为Q.
(1)求∠AQB的度数;
(2)若AB=6,求动点Q运动轨迹的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】若抛物线L:(a,b,c是常数,abc≠0)与直线l都经过y轴上的一点P,且抛物线L的顶点Q在直线l上,则称此直线l与该抛物线L具有“一带一路”关系.此时,直线l叫做抛物线L的“带线”,抛物线L叫做直线l的“路线”.
(1)若直线y=mx+1与抛物线具有“一带一路”关系,求m,n的值;
(2)若某“路线”L的顶点在反比例函数的图象上,它的“带线”l的解析式为y=2x﹣4,求此“路线”L的解析式;
(3)当常数k满足≤k≤2时,求抛物线L:的“带线”l与x轴,y轴所围成的三角形面积的取值范围.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】我们定义:有一组邻角相等的凸四边形叫做“等邻角四边形”
(1)概念理解:
请你根据上述定义举一个等邻角四边形的例子;
(2)问题探究;
如图1,在等邻角四边形ABCD中,∠DAB=∠ABC,AD,BC的中垂线恰好交于AB边上一点P,连结AC,BD,试探究AC与BD的数量关系,并说明理由;
(3)应用拓展;
如图2,在Rt△ABC与Rt△ABD中,∠C=∠D=90°,BC=BD=3,AB=5,将Rt△ABD绕着点A顺时针旋转角α(0°<∠α<∠BAC)得到Rt△AB′D′(如图3),当凸四边形AD′BC为等邻角四边形时,求出它的面积.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】下列命题中,错误的是( )
A.两条对角线互相垂直的平行四边形是菱形
B.两条对角线相等的平行四边形是菱形
C.一组邻边相等的平行四边形是菱形
D.四边形相等的四边形是菱形
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知甲、乙两组数据的平均数都是15,甲组数据的方差s2=1,乙组数据的方差s2=8,下列结论中正确的是( )
A. 甲组数据比乙组数据的波动大 B. 乙组数据比甲组数据的波动大
C. 甲组数据与乙组数据的波动一样大 D. 甲组数据与乙组数据的波动不能比较
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com