【题目】若抛物线L:
(a,b,c是常数,abc≠0)与直线l都经过y轴上的一点P,且抛物线L的顶点Q在直线l上,则称此直线l与该抛物线L具有“一带一路”关系.此时,直线l叫做抛物线L的“带线”,抛物线L叫做直线l的“路线”.
(1)若直线y=mx+1与抛物线
具有“一带一路”关系,求m,n的值;
(2)若某“路线”L的顶点在反比例函数
的图象上,它的“带线”l的解析式为y=2x﹣4,求此“路线”L的解析式;
(3)当常数k满足
≤k≤2时,求抛物线L:
的“带线”l与x轴,y轴所围成的三角形面积的取值范围.
【答案】(1)m=﹣1,n=1;(2)
或
;(3)
≤S≤
.
【解析】
试题分析:(1)找出直线y=mx+1与y轴的交点坐标,将其代入抛物线解析式中即可求出n的值;再根据抛物线的解析式找出顶点坐标,将其代入直线解析式中即可得出结论;
(2)找出直线与反比例函数图象的交点坐标,由此设出抛物线的解析式,再由直线的解析式找出直线与x轴的交点坐标,将其代入抛物线解析式中即可得出结论;
(3)由抛物线解析式找出抛物线与y轴的交点坐标,再根据抛物线的解析式找出其顶点坐标,由两点坐标结合待定系数法即可得出与该抛物线对应的“带线”l的解析式,找出该直线与x、y轴的交点坐标,结合三角形的面积找出面积S关于k的关系上,由二次函数的性质即可得出结论.
试题解析:(1)令直线y=mx+1中x=0,则y=1,即直线与y轴的交点为(0,1);
将(0,1)代入抛物线
中,得n=1.
∵抛物线的解析式为
=
,∴抛物线的顶点坐标为(1,0).
将点(1,0)代入到直线y=mx+1中,得:0=m+1,解得:m=﹣1.
答:m=﹣1,n=1.
(2)将y=2x﹣4代入到
中有,2x﹣4=
,即
,解得:
,
,∴该“路线”L的顶点坐标为(﹣1,﹣6)或(3,2).
令“带线”l:y=2x﹣4中x=0,则y=﹣4,∴“路线”L的图象过点(0,﹣4).
设该“路线”L的解析式为
或
,由题意得:
或
,解得:m=2,n=
,∴此“路线”L的解析式为
或
.
(3)令抛物线L:
中x=0,则y=k,即该抛物线与y轴的交点为(0,k).
抛物线L:
的顶点坐标为(
,
),设“带线”l的解析式为y=px+k,∵点(
,
)在y=px+k上,∴
,解得:p=
,∴“带线”l的解析式为
.
令∴“带线”l:
中y=0,则
,解得:x=
.
即“带线”l与x轴的交点为(
,0),与y轴的交点为(0,k),∴“带线”l与x轴,y轴所围成的三角形面积S=
=
=
=
=
,∵
≤k≤2,∴
≤
≤2,∴S=
,当
=1时,S有最大值,最大值为
;当
=2时,S有最小值,最小值为
.
故抛物线L:y=ax2+(3k2﹣2k+1)x+k的“带线”l与x轴,y轴所围成的三角形面积的取值范围为
≤S≤
.
科目:初中数学 来源: 题型:
【题目】某通讯公司推出①、②两种通讯收费方式供用户选择,其中一种有月租费,另一种无月租费,且两种收费方式的通讯时间x(分钟)与收费y(元)之间的函数关系如图所示.![]()
(1)有月租费的收费方式是(填①或②),月租费是元;
(2)分别求出①、②两种收费方式中y与自变量x之间的函数关系式;
(3)请你根据用户通讯时间的多少,给出经济实惠的选择建议.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】为了打造区域中心城市,实现跨越式发展,我市新区建设正按投资计划有序推进.新区建设工程部,因道路建设需要开挖土石方,计划每小时挖掘土石方540m3 , 现决定向某大型机械租赁公司租用甲、乙两种型号的挖掘机来完成这项工作,租赁公司提供的挖掘机有关信息如表:
租金(单位:元/台·时) | 挖掘土石方量(单位:m3/台·时) | |
甲型挖掘机 | 100 | 60 |
乙型挖掘机 | 120 | 80 |
(1)若租用甲、乙两种型号的挖掘机共8台,恰好完成每小时的挖掘量,则甲、乙两种型号的挖掘机各需多少台?
(2)如果每小时支付的租金不超过850元,又恰好完成每小时的挖掘量,那么共有几种不同的租用方案?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知直线l1∥l2 , 直线l3和直线l1、l2交于点C和D,在直线CD上有一点P.![]()
(1)如果P点在C、D之间运动时,问∠PAC,∠APB,∠PBD有怎样的数量关系?请说明理由.
(2)若点P在C、D两点的外侧运动时(P点与点C、D不重合),试探索∠PAC,∠APB,∠PBD之间的关系又是如何?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某次知识竞赛共有20道题,每一题答对得10分,答错或不答都扣5分.小明得分要超过90分,他至少要答对多少道题?若设小明答对了x道题,则由题意可列出的不等式为( )
A.10x+5(20﹣x)>90B.10x+5(20﹣x)<90
C.10x﹣5(20﹣x)>90D.10x﹣5(20﹣x)<90
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com