分析 根据两直线平行,内错角相等可得∠AEG=∠CGE,再根据等角的余角相等求出∠DEH=∠BGF,然后利用“角角边”证明△DEH和△BGF全等,根据全等三角形对应边相等可得DE=BG,过点G作GK⊥AD于K,可得AK=BG,再求出△DEH和△KGE相似,利用相似三角形对应边成比例求出DE,再求出EK,然后利用勾股定理列式求出EG,然后求解即可.
解答 解:∵正方形ABCD的对边AD∥BC,
∴∠AEG=∠CGE,
∴∠DEH=∠BGF,
∵6个小正方形大小相同,
∴EH=GF,
在△DEH和△BGF中,
$\left\{\begin{array}{l}{∠DEH=∠BGF}\\{∠B=∠D=90°}\\{EH=GF}\end{array}\right.$,
∴△DEH≌△BGF(AAS),
∴DE=BG,![]()
过点G作GK⊥AD于K,则四边形ABGK是矩形,
所以,AK=BG,KG=AB=10,
∵∠DEH+∠KEG=90°,
∠KEG+∠KGE=90°,
∴∠DEH=∠KGE,
又∵∠D=∠EKG=90°,
∴△DEH∽△KGE,
∴$\frac{DE}{KG}$=$\frac{EH}{GE}$=$\frac{1}{5}$,
∴DE=$\frac{1}{5}$KG=$\frac{1}{5}$×10=2,
∴EK=AD-DE-AK=10-2-2=6,
在Rt△KEG中,由勾股定理得,EG=$\sqrt{{6}^{2}+1{0}^{2}}$=2$\sqrt{34}$,
所以,小正方形的边长为2$\sqrt{34}$×$\frac{1}{5}$=$\frac{2\sqrt{34}}{5}$.
点评 本题考查了正方形的性质,全等三角形的判定与性质,相似三角形的判定与性质,矩形的判定与性质,难点在于作辅助线构造出相似三角形和全等三角形.
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com