【题目】如图是一个平均被分成6等分的圆,每一个扇形中都标有相应的数字,甲乙两人分别转动转盘,设甲转动转盘后指针所指区域内的数字为x,乙转动转盘后指针所指区域内的数字为y(当指针在边界上时,重转一次,直到指向一个区域为止).
(1)直接写出甲转动转盘后所指区域内的数字为负数的概率;
(2)用树状图或列表法,求出点(x,y)落在第二象限内的概率.
【答案】(1)甲转动转盘后所指区域内的数字为负数的概率为;
(2)点(x,y)落在第二象限内的概率为.
【解析】试题分析:(1)根据古典概率的知识,利用概率公式即可求得答案;
(2)根据题意列出表格,然后根据表格即可求得所有等可能的结果与点(x,y)落在第二象限内的情况,然后利用概率公式求解即可求得答案.
解:(1)∵一共有6种等可能的结果,甲转动转盘后所指区域内的数字为负数的有:﹣1,﹣2共2种情况,
∴甲转动转盘后所指区域内的数字为负数的概率为: =;
(2)根据题意,列表得:
甲 乙 | ﹣1 | ﹣2 | 0 | 2 | 3 | 4 |
﹣1 | (﹣1,﹣1) | (﹣2,﹣1) | (0,﹣1) | (2,﹣1) | (3,﹣1) | (4,﹣1) |
﹣2 | (﹣1,﹣2) | (﹣2,﹣2) | (0,﹣2) | (2,﹣2) | (3,﹣2) | (4,﹣2) |
0 | (﹣1,0) | (﹣2,0) | (0,0) | (2,0) | (3,0) | (4,0) |
2 | (﹣1,2) | (﹣2,2) | (0,2) | (2,2) | (3,2) | (4,2) |
3 | (﹣1,3) | (﹣2,3) | (0,3) | (2,3) | (3,3) | (4,3) |
4 | (﹣1,4) | (﹣2,4) | (0,4) | (2,4) | (3,4) | (4,4) |
∴点(x,y)的坐标一共有36种等可能的结果,且每种结果发生的可能性相等,其中点(x,y)落在第二象限的结果共有6种,
∴点(x,y)落在第二象限内的概率为: =.
科目:初中数学 来源: 题型:
【题目】如图,菱形ABCD的顶点A,B在x轴上,点A在点B的左侧,点D在y轴的正半轴上,∠BAD=60°,点A的坐标为(-2,0).
(1)求线段AD所在直线的表达式;
(2)动点P从点A出发,以每秒1个单位长度的速度,按照A→D→C→B→A的顺序在菱形的边上匀速运动一周,设运动时间为t秒.求t为何值时,以点P为圆心、以1为半径的圆与对角线AC相切?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知点A(3,4),点B为直线x=1上的动点,设B(-1,y).
(1)如图①,若△ABO是等腰三角形且AO=AB时,求点B的坐标;
(2)如图②,若点C(x,0)且-1<x<3,BC⊥AC垂足为点C;
①当x=0时,求tan∠BAC的值;
②若AB与y轴正半轴的所夹锐角为α,当点C在什么位置时tanα的值最大?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某校为了解本校七年级学生的数学作业完成情况,将完成情况分为四个等级:
随机对该年级若干名学生进行了调查,然后把调查结果绘制成两幅不完整的统计图.请根据图中的信息解答下列问题:
(1)共调查了多少名同学?补全条形统计图;
(2)完成等级为C等的对应扇形的圆心角的度数是 ;
(3)该年级共有700人,估计该年级数学作业完成等级为D等的人数.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,图1是AD∥BC的一张纸条,按图1→图2→图3,把这一纸条先沿EF折叠并压平,再沿BF折叠并压平,若图3中∠CFE=18°,则图2中∠AEF的度数为( )
A.120°B.108°C.126°D.114°
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】阅读下面的材料并填空:
①(1﹣)(1+)=1﹣,反过来,得1﹣=(1﹣)(1+)=×;
②(1﹣)(1+)=1﹣,反过来,得1﹣=(1﹣)(1+)= × ;
③(1﹣)(1+)=1﹣,反过来,得1﹣= = ;
利用上面的材料中的方法和结论计算下题:
(1﹣)(1﹣)(1﹣)……(1﹣)(1﹣)(1﹣).
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中,AB=AC=8,BC=12,点D从B出发以每秒2个单位的速度在线段BC上从过点B向点C运动,点E同时从点C出发,以每秒2个单位的速度在线段AC上从点A运动,连接AD、DE,设D、E两点运动时间为秒.
(1)运动_____秒时,CD=3AE.
(2)运动多少秒时,△ABD≌△DCE能成立,并说明理由;
(3)若△ABD≌△DCE,∠BAC=则∠ADE=_______(用含的式子表示)。
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知:如图,AC∥DF,直线AF分别直线BD、CE 相交于点G、H,∠1=∠2,求证:∠C=∠D.
解:∵∠1=∠2(已知)
∠1=∠DGH(_________________)
∴∠2=__________(______________)
∴BD∥CE(________________)
∴∠C= ________(_______________)
又∵AC∥DF
∴∠D=∠ABG(________________)
∴∠C=∠D(________________)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】小明同学为调查某小学六个年级学生每周的零花钱情况,他在学校中随机抽取了400名学生进行调查统计并制成如下图表,
|
请根据图表提供的信息解答下列问题:
(1)a =__________,b =__________;
(2)补全频数分布直方图;
(3)若全校共有3000名学生,请你估计该校每周零花钱超过50元的学生有多少名?
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com