精英家教网 > 初中数学 > 题目详情
12.如图,在△ABC中,AB=AC=5,BC=6,将△ABC绕点C顺时针方向旋转一定角度后得到△A′B′C.若点A′恰好落在BC的延长线上,则点B′到BA′的距离为$\frac{24}{5}$.

分析 作A′D⊥CB′于D,B′E⊥BC于E,如图,利用旋转的性质得A′B′=A′C=AB=AC=5,B′C=BC=6,再根据等腰三角形的性质得CD=B′D=$\frac{1}{2}$B′C=3,则利用勾股定理得到A′D=4,然后利用面积法求B′E.

解答 解:作A′D⊥CB′于D,B′E⊥BC于E,如图,
∵△ABC绕点C顺时针方向旋转一定角度后得到△A′B′C,
∴A′B′=A′C=AB=AC=5,B′C=BC=6,
∴CD=B′D=$\frac{1}{2}$B′C=3,
在Rt△A′CD中,A′D=$\sqrt{{5}^{2}-{3}^{2}}$=4,
∵$\frac{1}{2}$B′E•A′C=$\frac{1}{2}$A′D•B′C,
∴B′E=$\frac{4×6}{5}$=$\frac{24}{5}$,
即点B′到BA′的距离为$\frac{24}{5}$.
故答案为$\frac{24}{5}$.

点评 本题考查了旋转的性质:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:选择题

2.下列计算正确的是(  )
A.2-(-1)3=2-1=1B.74-4÷70=70÷70=1
C.$6÷({\frac{1}{3}-\frac{1}{2}})=6×3-6×2=6$D.23-32=8-9=1

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

3.如图,在△ABC中,∠B、∠C的平分线BE,CD相交于点F,∠A=60°,则∠BFC=(  )
A.118°B.119°C.120°D.121°

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

20.如图,AB,AC为⊙O的弦,AB=AC,连接AO.
(1)如图1,求证:∠OAC=∠OAB;
(2)如图2,过点B作AC的垂线交⊙O于点D,连接CD,设AO的延长线交BD于点E,求证:BE=CD;
(3)在(2)的条件下,如图3,点F,G分别在CD,BD的延长线上,连接AG,AE,若CF•AG=3,∠GAB=45°+$\frac{1}{2}$∠GAE,∠B=50°,求△ACF的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

7.已知等边△ABC,M是边BC延长线上一点,连接AM交△ABC的外接圆于点D,延长BD至N,使得BN=AM,连接CN,MN,解答下列问题:
(1)猜想△CMN的形状,并证明你的结论;
(2)请你证明CN是⊙O的切线;
(3)若等边△ABC的边长是2,求AD•AM的值.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

17.已知x的绝对值是最小的正整数,y的倒数等于最小的合数,z是比-π大的最小整数,那么-z+2.5x3-2016yz-2z6+$\frac{10}{3}$xyz=62$\frac{5}{6}$或51$\frac{1}{6}$.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

4.如图,在Rt△ABC中,∠ABC=90°,AB=2,BC=1,将Rt△ABC沿∠ABC的平分线BB′方向平移得到△A′B′C′,连结AA′,BC′.若BB′=4$\sqrt{2}$,则BC′的长为(  )
A.6B.5C.4$\sqrt{2}$+1D.$\sqrt{41}$

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

1.如图,在Rt△ABC中,∠ACB=90°,∠ABC=30°,AC=2,CD是△ABC的中线,动点P从点C出发,沿CA以每秒1个单位长度的速度向终点A运动,同时,动点Q从点A出发,沿AB以每秒2个单位长度向终点B运动,过点P作PE∥AB,连结EQ,设点P运动的时间为t(s)(t>0)
(1)当四边形APEQ是菱形时,求t的值;
(2)当以点P、E、Q为顶点的三角形是直角三角形时,求t的值;
(3)设四边形APEQ与△BCD重叠部分图形的面积为S(平方单位),求S与t之间的函数关系式;
(4)设点A关于直线PQ的对称点为A′,点A′落在△ABC的外部时,直接写出t的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

2.已知平面上A,B,C,D四个点,按下列要求画出图形.
(1)连接AB,DC;
(2)过A,C作直线AC;
(3)作射线DB交AC于O;
(4)延长AD,BC相交于K.

查看答案和解析>>

同步练习册答案