【题目】如图,在平面直角坐标系xOy中,已知四边形DOBC是矩形,且D(0,4),B(6,0).若反比例函数y=(x>0)的图象经过线段OC的中点A,交DC于点E,交BC于点F.设直线EF的解析式为y=k2x+b.
(1)求反比例函数和直线EF的解析式;
(2)求△OEF的面积;
(3)请结合图象直接写出不等式k2x+b﹣>0的解集.
【答案】(1)反比例函数解析式为y=;直线EF的解析式为y=﹣x+5;(2);(3) .
【解析】试题分析:(1)先利用矩形的性质确定C点坐标(6,4),再确定A点坐标为(3,2),则根据反比例函数图象上点的坐标特征得到k1=6,即反比例函数解析式为y=;然后利用反比例函数解析式确定F点的坐标为(6,1),E点坐标为(,4),再利用待定系数法求直线EF的解析式;
(2)利用△OEF的面积=S矩形BCDO-S△ODE-S△OBF-S△CEF进行计算;
(3)观察函数图象得到当<x<6时,一次函数图象都在反比例函数图象上方,即k2x+b>.
试题解析:(1)∵四边形DOBC是矩形,且D(0,4),B(6,0),
∴C点坐标为(6,4),
∵点A为线段OC的中点,
∴A点坐标为(3,2),
∴k1=3×2=6,
∴反比例函数解析式为y=;
把x=6代入y=得y=1,则F点的坐标为(6,1);
把y=4代入y=得x=,则E点坐标为(,4),
把F(6,1)、E(,4)代入y=k2x+b得
,
解得,
∴直线EF的解析式为y=-x+5;
(2)△OEF的面积=S矩形BCDO-S△ODE-S△OBF-S△CEF
=4×6-×4×-×6×1-×(6-)×(4-1)
=;
(3)由图象得:不等式k2x+b->0的解集为<x<6.
科目:初中数学 来源: 题型:
【题目】为加强中小学生安全和禁毒教育,某校组织了“防溺水、交通安全、禁毒”知识竞赛,为奖励在竞赛中表现优异的班级,学校准备从体育用品商场一次性购买若干个足球和篮球(每个足球的价格相同,每个篮球的价格相同),购买1个足球和1个篮球共需159元;足球单价是篮球单价的2倍少9元.
(1)求足球和篮球的单价各是多少元?
(2)根据学校实际情况,需一次性购买足球和篮球共20个,但要求购买足球和篮球的总费用不超过1550元,学校最多可以购买多少个足球?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】平面直角坐标系中,A(0,4),点P从原点O开始向x轴正方向运动,设P点横坐标为m,以点P为圆心,PO为半径作⊙P交x 轴另一点为C,过点A作⊙P的切线交 x轴于点B,切点为Q.
(1)如图1,当B点坐标为(3,0)时,求m;
(2)如图2,当△PQB为等腰三角形时,求m;
(3)如图3,连接AP,作PE⊥AP交AB于点E,连接CE,求证:CE是⊙P的切线;
(4)若在x轴上存在点M(8,0),在点P整个运动过程中,求MQ的最小值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中,∠B=30°,∠C=45°,AD平分∠BAC交BC于点D,DE⊥AB,垂足为E。若DE=1,则BC的长为( )
A.2+B.C.D.3
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,AB⊥BC,AD⊥DC,∠BAD=100°,在BC、CD上分别找一点M、N,当△AMN的周长最小时,∠AMN+∠ANM的度数是_____.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,中,对角线交于点,,分别是,的中点.下列结论正确的是( )
①;②;③平分;④平分;⑤四边形是菱形.
A.③⑤B.①②④C.①②③④D.①②③④⑤
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图, 是的外接圆, 点在边上, 的平分线交于点,连接,过点作的平行线,与的延长线相交于点.
(1)求证: 是的切线;
(2)求证:△PBD∽△DCA;
(3)当时,求线段的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在平面直角坐标系xOy中,一次函数y=kx+5(x>-5)的图象G经过点A(-2,3),直线与图象G交于点B,与x轴交于点C.
(1)求k的值;
(2)横、纵坐标都是整数的点叫做整点.记图象G在点A,B之间的部分与线段OA,OC,BC围成的区域(不含边界)为W.
①当b=2时,直接写出区域W内的整点个数;
②区域W内恰有3个整点,结合函数图象,求b的取值范围.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com