精英家教网 > 初中数学 > 题目详情

【题目】如图,ABBC,ADDC,BAD=100°,在BC、CD上分别找一点M、N,当AMN的周长最小时,∠AMN+ANM的度数是_____

【答案】160°.

【解析】根据要使AMN的周长最小,即利用点的对称,使三角形的三边在同一直线上,作出A关于BCCD的对称点A′,A″,即可得出∠AA′M+A″=AA″A′=80°,进而得出∠AMN+ANM=2(AA′M+A″),即可得出答案.

A关于BCCD的对称点A′,A″,连接A′A″,交BCM,交CDN,则A′A″即为AMN的周长最小值.

∵∠DAB=100°,

∴∠AA′M+A″=80°.

由轴对称图形的性质可知:∠MA′A=MAA′,NAD=A″,且∠MA′A+MAA′=AMN,NAD+A″=ANM,

∴∠AMN+ANM=MA′A+MAA′+NAD+A″=2(AA′M+A″)=2×80°=160°.

故答案为:160°.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】下列方程中,解是x=﹣的是(  )

A. 3(x-)=0 B. 2x﹣(x+1)=0 C. D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】关于频率与概率有下列几种说法:

①“明天下雨的概率是90%表示明天下雨的可能性很大;

②“抛一枚硬币正面朝上的概率为表示每抛两次就有一次正面朝上;

③“某彩票中奖的概率是1%表示买10张该种彩票不可能中奖;

④“抛一枚硬币正面朝上的概率为表示随着抛掷次数的增加,抛出正面朝上这一事件发生的频率稳定在附近,正确的说法是

A①④ B.②③ C.②④ D.①③

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】(8分)某校有学生2000名,为了了解学生在篮球、足球、排球和乒乓球这四项球类运动中最喜爱的一项球类运动情况,对学生开展了随机调查,丙将结果绘制成如下的统计图.

请根据以上信息,完成下列问题:

(1)本次调查的样本容量是

(2)某位同学被抽中的概率是

(3)据此估计全校最喜爱篮球运动的学生人数约有 名;

(4)将条形统计图补充完整.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知数轴上三点M,O,N对应的数分别为﹣3,0,1,点P为数轴上任意一点,其对应的数为x.

(1)如果点P到点M、点N的距离相等,那么x的值是   

(2)x=   时,使点P到点M、点N的距离之和是5;

(3)如果点P以每秒钟3个单位长度的速度从点O向左运动时,点M和点N分别以每秒钟1个单位长度和每秒钟4个单位长度的速度也向左运动,且三点同时出发,那么   秒钟时点P到点M,点N的距离相等.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】下列变形中:

①由方程=2去分母,得x﹣12=10;

②由方程x=两边同除以,得x=1;

③由方程6x﹣4=x+4移项,得7x=0;

④由方程2﹣两边同乘以6,得12﹣x﹣5=3(x+3).

错误变形的个数是(  )个

A. 4 B. 3 C. 2 D. 1

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】知识是用来为人类服务的,我们应该把它们用于有意义的方面.下面就两个情景请你作出评判.

情景一:从教室到图书馆,总有少数同学不走人行道而横穿草坪,这是为什么呢?试用所学数学知识来说明这个问题.

情景二:AB是河流l两旁的两个村庄,现要在河边修一个抽水站向两村供水,问抽水站修在什么地方才能使所需的管道最短?请在图中表示出抽水站点P的位置,并说明你的理由:

你赞同以上哪种做法?你认为应用数学知识为人类服务时应注意什么?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】为了鼓励市民节约用水,某市水费实行分段计费制,每户每月用水量在规定用量及以下的部分收费标准相同,超出规定用量的部分收费标准相同.例如:若规定用量为10吨,每月用水量不超过10吨按1.5/吨收费,超出10吨的部分按2/吨收费,则某户居民一个月用水8吨,则应缴水费:8×1.5=12(元);某户居民一个月用水13吨,则应缴水费:10×1.5+(13﹣10)×2=21(元).

表是小明家14月份用水量和缴纳水费情况,根据表格提供的数据,回答:

月份

用水量(吨)

6

7

12

15

水费(元)

12

14

28

37

(1)该市规定用水量为   吨,规定用量内的收费标准是   /吨,超过部分的收费标准是   /吨.

(2)若小明家五月份用水20吨,则应缴水费   元.

(3)若小明家六月份应缴水费46元,则六月份他们家的用水量是多少吨?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,一、二、三、四这四个扇形的面积之比为1:3:5:1.

(1)请分别求出它们圆心角的度数.

(2)一、二、四这三个扇形的圆心角的度数之和是多少?

查看答案和解析>>

同步练习册答案