精英家教网 > 初中数学 > 题目详情
11.已知Rt△ABC中,AC=BC,∠C=90°,D为AB边的中点,∠EDF=90°,如图①∠EDF的两边分别交AC、CB(或它们的延长线)于E、F.当∠EDF的边DE⊥AC于E时,S△DEF,S△CEF,S△ABC满足S△DEF+S△CEF=$\frac{1}{2}$S△ABC
(1)如图②,当∠EDF的边DE和AC不垂直时,请证明上述结论仍然成立;
(2)如图③,当∠EDF的边DE与AC的延长线交于点E的情况下,上述结论是否成立?若成立,请给予证明;若不成立,S△DEF,S△CEF,S△ABC,又有怎样的数量关系?请写出你的猜想,不需证明.

分析 (1)先证明△CDE≌△BDF,即可得出结论;
(2)不成立;同(1)得:△DEC≌△DBF,得出S△DEF=S五边形DBFEC=S△CFE+S△DBC=S△CFE+$\frac{1}{2}$S△ABC

解答 解:(1)连接CD;如图2所示:
∵AC=BC,∠ACB=90°,D为AB中点,
∴∠B=45°,∠DCE=$\frac{1}{2}$∠ACB=45°,CD⊥AB,CD=$\frac{1}{2}$AB=BD,
∴∠DCE=∠B,∠CDB=90°,
∵∠EDF=90°,
∴∠1=∠2,
在△CDE和△BDF中,
$\left\{\begin{array}{l}{∠1=∠2}\\{CD=BD}\\{∠DCE=∠B}\end{array}\right.$,
∴△CDE≌△BDF(ASA),
∴S△DEF+S△CEF=S△ADE+S△BDF=$\frac{1}{2}$S△ABC
(2)不成立;${S}_{△DEF}-{S}_{△CEF}=\frac{1}{2}{S}_{△ABC}$;理由如下:连接CD,如图3所示:
同(1)得:△DEC≌△DBF,∠DCE=∠DBF=135°
∴S△DEF=S五边形DBFEC
=S△CFE+S△DBC
=S△CFE+$\frac{1}{2}$S△ABC
∴S△DEF-S△CFE=$\frac{1}{2}$S△ABC
∴S△DEF、S△CEF、S△ABC的关系是:S△DEF-S△CEF=$\frac{1}{2}$S△ABC

点评 本题考查了全等三角形的判定与性质、等腰直角三角形的性质、图形面积的求法;证明三角形全等是解决问题的关键.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:填空题

14.如图,把一张矩形纸片ABCD折叠成一个四边形AECD,已知CD=3,折痕CE长为2,则四边形AECD的面积为3$\sqrt{2}$-1..

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

15.如图,在△ABC中,AD是BC边上的高,AE是BC边上的中线,sinB=$\frac{1}{3}$,AD=CD=1.
(1)求BC的长;
(2)求tan∠DAE的值.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

12.若方程组$\left\{\begin{array}{l}{{a}_{1}x+{b}_{1}y={c}_{1}}\\{{a}_{2}x+{b}_{2}y={c}_{2}}\end{array}\right.$的解为$\left\{\begin{array}{l}{x=2}\\{y=3}\end{array}\right.$,那么方程组$\left\{\begin{array}{l}{2{a}_{1}x+3{b}_{1}y=5{c}_{1}}\\{2{a}_{2}x+3{b}_{2}y=5{c}_{2}}\end{array}\right.$的解为$\left\{\begin{array}{l}{x=5}\\{y=5}\end{array}\right.$.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

6.如图,在△ABC中,点D在边AB上,AD=20cm,BD=16cm,BC=24cm,点E在边AC上,且△ADE与△BCD相似.
(1)若AC=45cm,求AE的长;
(2)若△CDE的周长为75cm,求AC的长.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

16.如图,观察下列图形中三角形个数变化规律,那么第n个图形中一共有4n-3个三角形(用含字母n的代数式表示).

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

3.在平面直角坐标系xOy中,过⊙C上一点P作⊙C的切线l.当入射光线照射在点P处时,产生反射,且满足:反射光线与切线l的夹角和入射光线与切线l的夹角相等,点P称为反射点.规定:光线不能“穿过”⊙C,即当入射光线在⊙C外时,只在圆外进行反射;当入射光线在⊙C内时,只在圆内进行反射.特别地,圆的切线不能作为入射光线和反射光线.
光线在⊙C外反射的示意图如图1所示,其中∠1=∠2.
(1)自⊙C内一点出发的入射光线经⊙C第一次反射后的示意图如图2所示,P1是第1个反射点.请在图2中作出光线经⊙C第二次反射后的反射光线;
(2)当⊙O的半径为1时,如图3,
①第一象限内的一条入射光线平行于x轴,且自⊙O的外部照射在其上点P处,此光线经⊙O反射后,反射光线与y轴平行,则反射光线与切线l的夹角为45°;
②自点A(-1,0)出发的入射光线,在⊙O内不断地反射.若第1个反射点P1在第二象限,且第12个反射点P12与点A重合,则第1个反射点P1的坐标为(-$\frac{\sqrt{3}}{2}$,$\frac{1}{2})$;
(3)如图4,点M的坐标为(0,2),⊙M的半径为1.第一象限内自点O出发的入射光线经⊙M反射后,反射光线与坐标轴无公共点,求反射点P的纵坐标的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

20.如图,点M表示的数是(  )
A.1.5B.-1.5C.2.5D.-2.5

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

1.如图,点P是正方形ABCD内一点,点P到点A、B和D的距离分别为1,2$\sqrt{2}$,$\sqrt{10}$,△ADP沿点A旋转至△ABP′,连结PP′,并延长AP与BC相交于点Q.
(1)求证:△APP′是等腰直角三角形;
(2)求∠BPQ的大小.

查看答案和解析>>

同步练习册答案