【题目】在直角坐标系XOY中,二次函数图像的顶点坐标为,且与x轴的两个交点间的距离为6.
(1)求二次函数解析式;
(2)在x轴上方的抛物线上,是否存在点Q,使得以点Q、A、B为顶点的三角形与△ABC相似?如果存在,请求出Q点的坐标,如果不存在,请说明理由.
【答案】(1);(2)存在点或
【解析】
(1)由已知开设解析式:,B(7,0),进一步可求出结果;(2)过点O作CD⊥x轴于D,过点Q作QE⊥x轴于E,利用三角函数求出E,Q坐标,证明点Q在抛物线上,由抛物线的对称性,还存在一点,使△ABQ′∽△CAB.
(1)由已知开设解析式:,B(7,0)
把B(7,0)代入,求得a=
故所求解析式为
(2)在x轴上方的抛物线上存在点Q,使得以点Q、A、B为顶点的三角形与△ABC相似,
因为△ABC为等腰三角形,
∴当AB=BQ,
∵AB=6,
∴BQ=6,
过点O作CD⊥x轴于D,则AD=3,CD=,
∴∠BAC=∠ABC=30°,∴∠ACB=120°,∴∠ABQ=120°,
过点Q作QE⊥x轴于E,则∠QBE=60°,
∴QE=BQsin60°=,
∴BE=3,
∴E(10, 0),.
当x=10时,
∴点Q在抛物线上,
由抛物线的对称性,还存在一点,
使△ABQ′∽△CAB故存在点或.
科目:初中数学 来源: 题型:
【题目】如图,若二次函数y=ax2+bx+c(a≠0)图象的对称轴为x=1,与y轴交于点C,与x轴交于点A、点B(﹣1,0),则
①二次函数的最大值为a+b+c;
②a﹣b+c<0;
③b2﹣4ac<0;
④当y>0时,﹣1<x<3,其中正确的个数是( )
A. 1 B. 2 C. 3 D. 4
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,正方形ABCD中,M为BC上一点,F是AM的中点,EF⊥AM,垂足为F,交AD的延长线于点E,交DC于点N.
(1)求证:△ABM∽△EFA;
(2)若AB=12,BM=5,求DE的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在等边△ABC中,AC=9,点O在AC上,且AO=3,点P是AB上一动点,连结OP,将线段OP绕点O逆时针旋转60°得到线段OD,要使点D恰好落在BC上,则AP的长是( )
A.3B.5C.6D.8
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】甲乙两人在玩转盘游戏时,把转盘A、B分别分成4等份、3等份,并在每一份内标上数字,如图所示.游戏规定,转动两个转盘停止后,指针所指的两个数字之和为奇数时,甲获胜;为偶数时,乙获胜.
(1)用列表法(或画树状图)求甲获胜的概率;
(2)你认为这个游戏规则对双方公平吗?请简要说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某厂家生产并销售某种产品,假设销售量与产量相等,如图中的折线ABD,线段CD分别表示该产品每千克生产成本y1(单位:元),销售价y2(单位:元)与产量x(单位:kg)之间的函数关系.
(1)请解释图中点D的实际意义.
(2)求线段CD所表示的y2与x之间的函数表达式.
(3)当该产品产量为多少时,获得的利润最大?最大利润是多少?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】准备一张矩形纸片,按如图操作:
将△ABE沿BE翻折,使点A落在对角线BD上的M点,将△CDF沿DF翻折,使点C落在对角线BD上的N点.
(1)求证:四边形BFDE是平行四边形;
(2)若四边形BFDE是菱形,BE=2,求菱形BFDE的面积.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】定义:三角形一边上的点将该边分为两条线段,且这两条线段的积等于这个点到该边所对顶点连线的平方,则称这个点为三角形该边的“好点”.如图1,△ABC中,点D是BC边上一点,连结AD,若,则称点D是△ABC中BC边上的“好点”.
(1)如图2,△ABC的顶点是网格图的格点,请仅用直尺画出AB边上的一个“好点”.
(2)△ABC中,BC=9,,,点D是BC边上的“好点”,求线段BD的长.
(3)如图3,△ABC是的内接三角形,OH⊥AB于点H,连结CH并延长交于点D.
①求证:点H是△BCD中CD边上的“好点”.
②若的半径为9,∠ABD=90°,OH=6,请直接写出的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,某足球运动员站在点O处练习射门.将足球从离地面0.5m的A处正对球门踢出(点A在y轴上),足球的飞行高度y(单位:m)与飞行时间t(单位:s)之间满足函数关系y=at2+5t+c,己知足球飞行0.8s时,离地面的高度为3.5m.
(1)a= ,c= ;
(2)当足球飞行的时间为多少时,足球离地面最高?最大高度是多少?
(3)若足球飞行的水平距离x(单位:m)与飞行时间t(单位:s)之间具有函数关系x=10t,已知球门的高度为2.44m,如果该运动员正对球门射门时,离球门的水平距离为28m,他能否将球直接射入球门?
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com