【题目】如图,某足球运动员站在点O处练习射门.将足球从离地面0.5m的A处正对球门踢出(点A在y轴上),足球的飞行高度y(单位:m)与飞行时间t(单位:s)之间满足函数关系y=at2+5t+c,己知足球飞行0.8s时,离地面的高度为3.5m.
(1)a= ,c= ;
(2)当足球飞行的时间为多少时,足球离地面最高?最大高度是多少?
(3)若足球飞行的水平距离x(单位:m)与飞行时间t(单位:s)之间具有函数关系x=10t,已知球门的高度为2.44m,如果该运动员正对球门射门时,离球门的水平距离为28m,他能否将球直接射入球门?
【答案】(1),;(2)当足球飞行的时间s时,足球离地面最高,最大高度是4.5m;(3)能.
【解析】
(1)由题意得:函数y=at2+5t+c的图象经过(0,0.5)(0.8,3.5),代入函数的表达式即可求出a,c的值;
(2)利用配方法即可求出足球飞行的时间以及足球离地面的最大高度;
(3)把x=28代入x=10t得t=2.8,把t=2.8代入解析式求出y的值和2.44m比较大小即可得到结论.
(1)由题意得:函数y=at2+5t+c的图象经过(0,0.5)(0.8,3.5),
∴,
解得:,
∴抛物线的解析式为:y=﹣t2+5t+,
故答案为:﹣,;
(2)∵y=﹣t2+5t+,
∴y=﹣(t﹣)2+,
∴当t=时,y最大=4.5,
∴当足球飞行的时间s时,足球离地面最高,最大高度是4.5m;
(3)把x=28代入x=10t得t=2.8,
∴当t=2.8时,y=﹣×2.82+5×2.8+=2.25<2.44,
∴他能将球直接射入球门.
科目:初中数学 来源: 题型:
【题目】在直角坐标系XOY中,二次函数图像的顶点坐标为,且与x轴的两个交点间的距离为6.
(1)求二次函数解析式;
(2)在x轴上方的抛物线上,是否存在点Q,使得以点Q、A、B为顶点的三角形与△ABC相似?如果存在,请求出Q点的坐标,如果不存在,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,直线y=x+b与双曲线y=(k为常数,k≠0)在第一象限内交于点A(1,2),且与x轴、y轴分别交于B,C两点.
(1)求直线和双曲线的解析式;
(2)点P在x轴上,且△BCP的面积等于2,求P点的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,P1是反比例函数(k>0)在第一象限图象上的一点,点A1的坐标为(2,0).若△P1OA1与△P2A1A2均为等边三角形,则A2点的坐标为_____.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,Rt△ABC中,∠ACB=90°,BC=3,tanA=,将Rt△ABC绕点C顺时针旋转90°得到△DEC,点F是DE上一动点,以点F为圆心,FD为半径作⊙F,当FD=_____时,⊙F与Rt△ABC的边相切.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,点B、C、D都在⊙O上,过点C作AC∥BD交OB延长线于点A,连接CD,且∠CDB=∠OBD=30°,DB=cm.
(1)求证:AC是⊙O的切线;
(2)求由弦CD、BD与弧BC所围成的阴影部分的面积.(结果保留π)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某公司2017年初刚成立时投资1000万元购买新生产线生产新产品,此外,生产每件该产品还需要成本40元.按规定,该产品售价不得低于60元/件且不超过160元/件,且每年售价确定以后不再变化,该产品的年销售量(万件)与产品售价(元)之间的函数关系如图所示.
(1)求与之间的函数关系式,并写出的取值范围;
(2)求2017年该公司的最大利润?
(3)在2017年取得最大利润的前提下,2018年公司将重新确定产品售价,能否使两年共盈利达980万元.若能,求出2018年产品的售价;若不能,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】△ABC中,AB=AC,∠ABC=α,过点A作直线MN,使MN∥BC,点D在直线MN上,作射线BD,将射线BD绕点B顺时针旋转角α后交直线AC于点E.
(1)如图①,当α=60°,且点D在射线AN上时,直接写出线段AB,AD,AE的数量关系.
(2)如图②,当α=45°,且点D在射线AN上时,直写出线段AB、AD、AE的数量关系,并说明理由.
(3)当α=30°时,若点D在射线AM上,∠ABE=15°,AD=﹣1,请直接写出线段AE的长度.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com