【题目】如图,点B、C、D都在⊙O上,过点C作AC∥BD交OB延长线于点A,连接CD,且∠CDB=∠OBD=30°,DB=cm.
(1)求证:AC是⊙O的切线;
(2)求由弦CD、BD与弧BC所围成的阴影部分的面积.(结果保留π)
【答案】(1)证明见解析;(2)6πcm2.
【解析】试题分析:连接BC,OD,OC,设OC与BD交于点M.(1)求出∠COB的度数,求出∠A的度数,根据三角形的内角和定理求出∠OCA的度数,根据切线的判定推出即可;
(2)证明△CDM≌△OBM,从而得到S阴影=S扇形BOC.
试题解析:如图,连接BC,OD,OC,设OC与BD交于点M.
(1)根据圆周角定理得:∠COB=2∠CDB=2×30°=60°,∵AC∥BD,∴∠A=∠OBD=30°,∴∠OCA=180°﹣30°﹣60°=90°,即OC⊥AC,∵OC为半径,∴AC是⊙O的切线;
(2)由(1)知,AC为⊙O的切线,∴OC⊥AC.∵AC∥BD,∴OC⊥BD.由垂径定理可知,MD=MB=BD=3.在Rt△OBM中,∠COB=60°,OB==6.
在△CDM与△OBM中,∴△CDM≌△OBM(ASA),∴S△CDM=S△OBM
∴阴影部分的面积S阴影=S扇形BOC==6π(cm2).
科目:初中数学 来源: 题型:
【题目】(1)操作发现:
如图①'在正方形ABCD中,过A点有直线AP,点B关于AP的对称点为E,连接DE交AP于点F,当∠BAP=20°时,则∠AFD= °;当∠BAP=α°(0<α<45°)时,则∠AFD= °;猜想线段DF, EF, AF之间的数量关系:DF-EF= AF(填系数);
(2)数学思考:
如图②,若将“正方形ABCD中”改成“菱形ABCD中,∠BAD=120°”,其他条件不变,则∠AFD= °;线段DF, EF, AF之间的数量关系是否发生改变,若发生改变,请写出数量关系并说明理由;
(3)类比探究:
如图③,若将“正方形ABCD中”改成“菱形ABCD中,∠BAD=α°”,其他条件不变,则∠AFD= °;请直接写出线段DF,EF,AF之间的数量关系: .
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】阅读下列材料
材料一:对于任意的非零实数和正实数,如果满足为整数,则称k是x的一个整商系数,
例如:当时,,则称是的一个整商系数;
当时,,则称是的一个整商系数;
当时,,则称是的一个整商系数;
给论:一个非零实数有无数个整商系数,其中最小的一个整商系数记为;
例如: ,
材料二:对于一元二次方程的两根,有如下关系:
请根据材料解决下列问题
若关于的方程:
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,二次函数的图象与x轴相交于A(﹣3,0)、B(1,0)两点,与y轴相交于点C(0,3),点C、D是二次函数图象上的一对对称点,一次函数的图象过点B、D.
(1)求D点坐标;
(2)求二次函数的解析式;
(3)根据图象直接写出使一次函数值小于二次函数值的x的取值范围.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图所示,用三种大小不同的六个正方形和一个缺角的长方形拼成长方形ABCD,其中GH=2cm,GK=2cm,设BF=x cm,
(1)用含x的代数式表示CM=_________cm,DM=_________cm.
(2)求长方形ABCD的周长(用含有x的代数式表示),并求x=3时,长方形的周长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】(12分)实施新课程改革后,学生的自主学习、合作交流能力有很大提高,张老师为了了解所教班级学生自主学习、合作交流的具体情况,对本班部分学生进行了为期三个月的跟踪调查,并将调查结果分成四类,A:特别好;B:好;C:一般;D:较差;并将调查结果绘制成以下两幅不完整的统计图,请你根据统计图解答下列问题:
(1)本次调查中,张老师一共调查了 名同学,其中C类女生有 名,D类男生有 名;
(2)将上面的条形统计图补充完整;
(3)为了共同进步,张老师想从被调查的A类和D类学生中分别选取一位同学进行“一帮一”互助学习,请用列表法或画树形图的方法求出所选两位同学恰好是一位男同学和一位女同学的概率.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在直角坐标系中,已知点A,B的坐标是(a,0),(b,0).a,b满足方程组,C为y轴正半轴上一点,且S△ABC=6.
(1)求A,B,C三点的坐标;
(2)是否存在点P(t,t),使S△PAB=S△ABC?若存在,请求出P点的坐标;若不存在,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图所示,在平面直角坐标系中,,,是等腰直角三角形,且,把绕点顺时针旋转,得到;把绕点顺时针旋转,得到.依次类推,则旋转第2017次后,得到的等腰直角三角形的直角顶点的坐标为( )
A.B.C.D.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】矩形ABCD与CEFG,如图放置,点B,C,E共线,点C,D,G共线,连接AF,取AF的中点H,连接GH.若BC=EF=2,CD=CE=1,则GH=( )
A. 1 B. C. D.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com