【题目】某公司欲招聘一名部门经理,对甲、乙、丙三名候选人进行了笔试与面试,甲、乙、丙三人的笔试成绩分别为95分、94分和94分.他们的面试成绩如表:
候选人 | 评委1 | 评委2 | 评委3 |
甲 | 94 | 89 | 90 |
乙 | 92 | 90 | 94 |
丙 | 91 | 88 | 94 |
(1)分别求出甲、乙、丙三人的面试成绩的平均分、、和;
(2)若按笔试成绩的40%与面试成绩的60%的和作为综合成绩,综合成绩高者将被录用,请你通过计算判断谁将被录用.
【答案】:(1)=91分,=92分,=91分;(2)乙将被录用.
【解析】
(1)根据算术平均数的含义和求法,分别用三人的面试的总成绩除以3,求出甲、乙、丙三人的面试的平均分、和即可;
(2)首先根据加权平均数的含义和求法,分别求出三人的综合成绩各是多少;然后比较大小,判断出谁的综合成绩最高,即可判断出谁将被录用.
解:(1)=(94+89+90)÷3=273÷3=91(分),
=(92+90+94)÷3=276÷3=92(分),
=(91+88+94)÷3=273÷3=91(分),
∴甲的面试成绩的平均分是91分,乙的面试成绩的平均分是92分,丙的面试成绩的平均分是91分;
(2)甲的综合成绩=40%×95+60%×91=38+54.6=92.6(分),
乙的综合成绩=40%×94+60%×92=37.6+55.2=92.8(分),
丙的综合成绩=40%×94+60%×91=37.6+54.6=92.2(分),
∵92.8>92.6>92.2,
∴乙将被录用.
故答案为:(1)=91分,=92分,=91分;(2)乙将被录用.
科目:初中数学 来源: 题型:
【题目】如图,平面直角坐标系xoy中A(﹣4,6),B(﹣1,2),C(﹣4,1).
(1)作出△ABC关于直线x=1对称的图形△A1B1C1并写出△A1B1C1各顶点的坐标;
(2)将△A1B1C1向左平移2个单位,作出平移后的△A2B2C2,并写出△A2B2C2各顶点的坐标;
(3)观察△ABC和△A2B2C2,它们是否关于某直线对称?若是,请指出对称轴,并求△ABC的面积.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】点是轴正半轴的一个动点,过点作轴的垂线交双曲线于点,连接.
如图甲,当点在轴的正方向上运动时,的面积大小是否变化?若不变,请求出的面积;若改变,试说明理由;
如图乙,在轴上的点的右侧有一点,过点作轴的垂线交双曲线于点,连接交于点,设的面积是,梯形的面积为,写出与的大小关系(用 “”、“”、“”表示);
如图丙,的延长线与双曲线的另一个交点为,垂直于轴,垂足为点,连接,,试证明四边形的面积为一个常数.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】青青草原上,灰太狼每天都想着如何抓羊,而且是屡败屡试,永不言弃,(如图所示)一天,灰太狼在自家城堡顶部A处测得懒羊羊所在地B处的俯角为60°,然后下到城堡的C处,测得B处的俯角为30°.已知AC=50米,若灰太狼以5m/s的速度从城堡底部D处出发,懒羊羊以3m/s沿DB延长线方向逃跑,灰太狼几秒钟后能抓到懒羊羊?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】“五一”假日期间,某网店为了促销,设计了一种抽奖送积分活动,在该网店网页上显示如图所示的圆形转盘,转盘被均等的分成四份,四个扇形上分别标有“谢谢惠顾”、“10分”、“20分”、“40分”字样.参与抽奖的顾客只需用鼠标点击转盘,指针就会在转动的过程中随机的停在某个扇形区域,指针指向扇形上的积分就是顾客获得的奖励积分,凡是在活动期间下单的顾客,均可获得两次抽奖机会,求两次抽奖顾客获得的总积分不低于30分的概率.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中,点O是AC边上一动点,过点O作BC的平行线交∠ACB的角平分线于点E,交∠ACB的外角平分线于点F
(1)求证:EO=FO;
(2)当点O运动到何处时,四边形CEAF是矩形?请证明你的结论.
(3)在第(2)问的结论下,若AE=3,EC=4,AB=12,BC=13,请直接写出凹四边形ABCE的面积为 .
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】雅礼集团某学校教学楼需要在规定时间内建造完成,以备迎接新学期的开学,在工程招标时,接到甲、乙两个工程队的投标书如下:(部分信息)
学校后勤处提出两个方案:①由甲工程队独施工;②由乙工程队单独施工;
校团委学生代表小组根据甲、乙两队的投标书测算及工期安排,提出了新的方案:
③若甲乙两队合做4天,余下的工程由乙队单独做也正好如期完成.
试问:(1)学校规定的期限是多少天?
(2)在不耽误工期的前提下,你觉得哪一种施工方案最节省工程款?请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,一次函数y=kx+b(k≠0)的图象与反比例函数的图象相交于A(-1,m),B(n,-1)两点,直线AB与y轴交于C点,连接OB.
(1)求一次函数的表达式;
(2)在x轴上找一点P,连接BP,使△BOP的面积等于△BOC的面积的2倍,求满足条件的点P的坐标.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com