精英家教网 > 初中数学 > 题目详情
19.指出下列各项中哪些是代数式,并说明原因.
①x3-3;②$\sqrt{\frac{3}{b}}$;③m-4=8;④2a-b>5;⑤$\sqrt{78}$;⑥73.

分析 根据代数式的概念即可求出答案.

解答 解:由数和表示数的字母经有限次加、减、乘、除、乘方和开方运算所得的式子,或含有字母的数学表达式称代数式,
故x3-3;$\sqrt{\frac{3}{b}}$、$\sqrt{78}$、73是代数式

点评 本题考查代数式的概念,属于基础题型.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:选择题

9.如图,图中共有同旁内角(  )
A.2对B.3对C.4对D.5对

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

10.下面是利用尺规作∠AOB的角平分线OC的作法:
①以点O为圆心,适当长为半径画弧,交OA、OB于点D,E;
②分别以点D,E为圆心,以大于$\frac{1}{2}$DE的长为半径作弧,两弧在∠AOB内部交于点C;
③画射线OC,射线OC就是∠AOB的平分线.
如图,在用尺规作角平分线过程中,用到的三角形全等的判定方法是(  )
A.ASAB.SASC.SSSD.AAS

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

7.下列从左到右的变形,错误的是(  )
A.$\frac{a}{b}$=$\frac{ac}{bc}$(c≠0)B.$\frac{-a-b}{a+b}$=-1
C.$\frac{{x}^{2}-9}{{x}^{2}+6x+9}$=$\frac{x-3}{x+3}$D.$\frac{0.2a+b}{a+0.5b}$=$\frac{2a+b}{a+5b}$

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

14.如图,点C、D在以AB为直径的⊙O上,且CD平分∠ACB,若AB=2,∠CBA=15°,则CD的长为(  )
A.1B.$\sqrt{2}$C.$\sqrt{3}$D.2$\sqrt{2}$

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

3.如图,D是△ABC的边AC上的一点,连接BD,已知∠ABD=∠C,AB=6,AD=4,AC=9.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

10.把一个自然数所有数位上的数字先平方再求和得到一个新数,叫做第一次运算,再把所得新数所有数位上的数字先平方再求和又将得到一个新数,叫做第二次运算,…如此重复下去,若最终结果为1,我们把具有这种特征的自然数称为“快乐数”,例如:
23→22+32=13→12+32=10→12+02=1
91→92+12=82→82+22=68→62+82=100→12+02+02=1.
所以23和91都是“快乐数”.
(1)13是(填“是”或“不是”)“快乐数”;最小的三位“快乐数”是100;
(2)若一个两位“快乐数”经过两次运算后结果为1,求出这个“快乐数”;
(3)请证明任意一个“快乐数”经过若干次运算后都不可能得到16.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

7.解方程:2x2-6x-1=0.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

8.(1)观察思考
如图,线段AB上有两个点C、D,请分别写出以点A、B、C、D为端点的线段,并计算图中共有多少条线段;
(2)模型构建
如果线段上有m个点(包括线段的两个端点),则该线段上共有多少条线段?请说明你结论的正确性;
(3)拓展应用
8位同学参加班上组织的象棋比赛,比赛采用单循环制(即每两位同学之间都要进行一场比赛),那么一共要进行多少场比赛?
请将这个问题转化为上述模型,并直接应用上述模型的结论解决问题.

查看答案和解析>>

同步练习册答案