精英家教网 > 初中数学 > 题目详情
10.把一个自然数所有数位上的数字先平方再求和得到一个新数,叫做第一次运算,再把所得新数所有数位上的数字先平方再求和又将得到一个新数,叫做第二次运算,…如此重复下去,若最终结果为1,我们把具有这种特征的自然数称为“快乐数”,例如:
23→22+32=13→12+32=10→12+02=1
91→92+12=82→82+22=68→62+82=100→12+02+02=1.
所以23和91都是“快乐数”.
(1)13是(填“是”或“不是”)“快乐数”;最小的三位“快乐数”是100;
(2)若一个两位“快乐数”经过两次运算后结果为1,求出这个“快乐数”;
(3)请证明任意一个“快乐数”经过若干次运算后都不可能得到16.

分析 (1)由13经过两次运算后结果为1可得出13是“快乐数”,再由100经过一次运算后结果为1结合100为最小的三位数即可得出最小的三位“快乐数”是100;
(2)由一个两位“快乐数”经过两次运算后结果为1可得出该“快乐数”经过一次运算后结果为10或100,将10和100拆分成两个平方数相加的格式即可得出结论;
(3)通过运算可找出16不是“快乐数”,结合“快乐数”在经过若干次运算后仍为“快乐数”即可证出结论.

解答 解:(1)∵13→12+32=10→12+02=1,
∴13是“快乐数”.
∵100→12+02+02=1,且100是最小的三位数,
∴最小的三位“快乐数”是100.
故答案为:是;100.
(2)∵一个两位“快乐数”经过两次运算后结果为1,
∴该两位数经过一次运算为10或100,
∵10=1+9=12+32,100=64+36=82+62
∴这个“快乐数”为13、31、68或86.
(3)∵16→12+62=37→32+72=58→52+82=89→82+92=145→12+42+52=42→42+22=20→22+02=4→42=16,
∴16不是“快乐数”.
∵任意一个“快乐数”经过若干次运算后得到的数都是“快乐数”,
∴任意一个“快乐数”经过若干次运算后都不可能得到16.

点评 本题考查了因式分解的应用,读懂题意弄清“快乐数”的判定是解题的关键.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:选择题

1.用一个平面去截一个正方体,所得截面多边形的边数最多是(  )
A.3B.4C.5D.6

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

2.已知$\frac{a+b}{b}$=3,则$\frac{a}{b}$=2.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

19.指出下列各项中哪些是代数式,并说明原因.
①x3-3;②$\sqrt{\frac{3}{b}}$;③m-4=8;④2a-b>5;⑤$\sqrt{78}$;⑥73.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

5.解下列方程:
(1)x2+3=3(x+1)
(2)2x2-x-3=0.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

15.数学问题:如图1,在△ABC中,∠A=α,∠ABC、∠ACB的n等分线分别交于点O1、O2、…、On-1,求∠BOn-1C的度数?

问题探究:我们从较为简单的情形入手.
探究一:如图2,在△ABC中,∠A=α,∠ABC、∠ACB的角平分线分别交于点O1,求∠BO1C的度数?
解:由题意可得∠O1BC=$\frac{1}{2}$∠ABC,∠O1CB=$\frac{1}{2}$∠ACB
∴∠O1BC+∠O1CB=$\frac{1}{2}$(∠ABC+∠ACB)=$\frac{1}{2}$(180°-α)
∴∠BO1C=180°-$\frac{1}{2}$(180°-α)=90°+$\frac{1}{2}$α.
探究二:如图3,∠A=α,∠ABC、∠ACB三等分线分别交于点O1、O2,求∠BO2C的度数.
解:由题意可得∠O2BC=$\frac{2}{3}$∠ABC,∠O2CB=$\frac{2}{3}$∠ACB
∴∠O2BC+∠O2CB=$\frac{2}{3}$(∠ABC+∠ACB)=$\frac{2}{3}$(180°-α)
∴∠BO2C=180°-$\frac{2}{3}$(180°-α)=60°+$\frac{2}{3}$α.
探究三:如图4,∠A=α,∠ABC、∠ACB四等分线分别交于点O1、O2、O3,求∠BO3C的度数.
(仿照上述方法,写出探究过程)
问题解决:如图1,在△ABC中,∠A=α,∠ABC、∠ACB的n等分线分别交于点O1、O2、…、On-1,求∠BOn-1C的度数.
问题拓广:
如图2,在△ABC中,∠A=α,∠ABC、∠ACB的角平分线交于点O1,两条角平分线构成一角∠BO1C.
得到∠BO1C=90°+$\frac{1}{2}$α.
探究四:如图3,∠A=α,∠ABC、∠ACB三等分线分别交于点O1、O2,四条等分线构成两个角∠BO1C,∠BO2C,则∠BO2C+∠BO1C=180°+α.
探究五:如图4,∠A=α,∠ABC、∠ACB四等分线分别交于点O1、O2、O3,六等分线构成两个角∠BO3C,∠BO2C,∠BO1C,则∠BO3C+∠BO2C+∠BO1C=270°+$\frac{3}{2}$α.
探究六:如图1,在△ABC中,∠A=α,∠ABC、∠ACB的n等分线分别交于点O1、O2、…、On-1,(2n-2))等分线构成(n-1)个角∠BOn-1C…∠BO3C,∠BO2C,∠BO1C,则∠BOn-1C+…∠BO3C+∠BO2C+∠BO1C=(n-1)(90°+$\frac{1}{2}$α).

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

2.如图,在△ABC中,AB=AC=10,BC=16,点D、E分别是BC、AC边上的点,且∠ADE=∠B,EA=DE,则BD的长=$\frac{39}{4}$.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

19.如图,△ABC中,AD是中线,BC=8,∠B=∠DAC,则线段AC的长为4$\sqrt{2}$.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

20.下列图形中,是三棱柱的展开图的是(  )
A.B.C.D.

查看答案和解析>>

同步练习册答案