| A. | 1 | B. | $\sqrt{2}$ | C. | $\sqrt{3}$ | D. | 2$\sqrt{2}$ |
分析 连接OC,过点O作OE⊥CD,构造直角三角形,利用勾股定理和三角函数解答.
解答
解:连接OC,过点O作OE⊥CD,垂足为点E,
∵∠ABC=15°,OB=OC,
∴∠OCB=15°,
∵AB是⊙O的直径,
∴∠ACB=90°,
∵CD平分∠ACB,
∴∠BCD=45°,
∴∠OCE=∠BCD-∠OBC=45°-15°=30°,
而AB=2OC=2,
∴OC=1,
∵cos30°=$\frac{CE}{OC}$,
∴在Rt△OCE中,CE=OC×cos30°=1×$\frac{\sqrt{3}}{2}$,
∵OE⊥CD,
∴CD=2CE=$\sqrt{3}$.
点评 本题考查的是圆周角定理,熟知在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半是解答此题的关键.
科目:初中数学 来源: 题型:选择题
| A. | 100° | B. | 120° | C. | 135° | D. | 150° |
查看答案和解析>>
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com