精英家教网 > 初中数学 > 题目详情

【题目】在平面直角坐标系xOy中,⊙C的半径为r(r>1),P是圆内与圆心C不重合的点,⊙C的“完美点”的定义如下:若直线CP与⊙C交于点A,B,满足|PA﹣PB|=2,则称点P为⊙C的“完美点”,如图为⊙C及其“完美点”P的示意图.

(1)当⊙O的半径为2时,
①点M( ,0)⊙O的“完美点”,点N(0,1)⊙O的“完美点”,点T(﹣ ,﹣ ⊙O的“完美点”(填“是”或者“不是”);
②若⊙O的“完美点”P在直线y= x上,求PO的长及点P的坐标;
(2)⊙C的圆心在直线y= x+1上,半径为2,若y轴上存在⊙C的“完美点”,求圆心C的纵坐标t的取值范围.

【答案】
(1)不是;是;是;解:根据题意,,PA﹣PB,=2,∴,OP+2﹣(2﹣OP),=2,∴OP=1.若点P在第一象限内,作PQ⊥x轴于点Q,如图1中,∵点P在直线y= x上,OP=1,∴OQ= ,PQ= .∴P( , ).若点P在第三象限内,根据对称性可知其坐标为(﹣ ,﹣ ).综上所述,PO的长为1,点P的坐标为( , )或(﹣ ,﹣
(2)解:对于⊙C的任意一个“完美点”P都有|PA﹣PB|=2,

∴|CP+2﹣(2﹣CP)|=2.

∴CP=1.

∴对于任意的点P,满足CP=1,都有|CP+2﹣(2﹣CP)|=2,

∴|PA﹣PB|=2,故此时点P为⊙C的“完美点”.因此,⊙C的“完美点”是以点C为圆心,1为半径的圆.

如图2中,设直线y= x+1与y轴交于点D,当⊙C移动到与y轴相切且切点在点D的下方时,t的值最小.

设切点为E,连接CE,

∵⊙C的圆心在直线y= x+1上,

∴此直线和x轴,y轴的交点C(0,1),F(﹣ ,0),

∴OF= ,OD=1,

∵CE∥OF,

∴△DOF∽△DEC,

=

=

∴DE= ,t的最小值为1﹣

当⊙C移动到与y轴相切且切点在点D的上方时,t的值最大.

同理可得t的最大值为1+

综上所述,t的取值范围为1﹣ ≤t≤1+


【解析】解:(1)点M不是⊙O的“完美点”,

点N是⊙O的“完美点”,

点T是⊙O的“完美点”.

所以答案是不是,是,是.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】已知:A(0,1),B(2,0),C(4,3)

(1)在直角坐标系中描出各点,画出△ABC

(2)求△ABC的面积;

(3)设点P在坐标轴上,且△ABP与△ABC的面积相等,求点P的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】(本题8分)如图1,平行四边形ABCD中,点O是对角线AC的中点,EF过点O,与AD,BC分别相交于点E,F,GH过点O,与AB,CD分别相交于点G,H,连接EG,FG,FH,EH.

(1)求证:四边形EGFH是平行四边形;

(2)如图2,若EF//AB,GH//BC,在不添加任何辅助线的情况下,请直接写出图2中与四边形AGHD面积相等的所有平行四边形(四边形AGHD除外).

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知A、B两点的坐标分别为(﹣2,0)、(0,1),⊙C 的圆心坐标为(0,﹣1),半径为1.若D是⊙C上的一个动点,射线AD与y轴交于点E,则△ABE面积的最大值是(
A.3
B.
C.
D.4

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】金湖中学社团活动开展地丰富多彩.七年级数学社团课上同学们在探究一数值转换器,原理如图所示.开始输入x值为5,可发现第一次输出的结果是8,第2次输出结果是4,依次下去,第2018次输出的结果是__.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】(1)当a≠0时,求的值.(写出解答过程)

(2)若a≠0,b≠0,且+ =0,则的值为   

(3)若ab>0,则++的值为   

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知:如图,EF是四边形ABCD的对角线AC上的两点,AF=CEDF=BEDFBE

求证:(1)AFD≌△CEB.(2)四边形ABCD是平行四边形.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知:如图,在矩形ABCD中,M、N分别是边AD、BC的中点,E、F分别是线段BM、CM的中点

(1)求证:ABM≌△DCM

(2)判断四边形MENF是什么特殊四边形,并证明你的结论;

(3)当AD:AB= _时,四边形MENF是正方形(只写结论,不需证明)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在△ABC和△ADE中,AB=AC,AD=AE,∠BAC=∠DAE,且点B,A,D在同一条直线上,M,N分别为BE,CD的中点.

(1)求证:△ABE≌ACD;

(2)判断△AMN的形状,并说明理由.

查看答案和解析>>

同步练习册答案