【题目】如图,点P是直线y=+2与双曲线y=在第一象限内的一个交点,直线y=+2与x轴、y轴的交点分别为A、C,过P作PB⊥x轴,AB+PB=9.
(1)求m的值;
(2)在双曲线上是否存在一点G,使得△ABG的面积等于△PBC的面积?若存在,求出点G的坐标;若不存在,说明理由.
【答案】(1)6;(2)存在一点G,使得△ABG的面积等于△PBC的面积,G点坐标为(6,1)或(﹣6,﹣1).
【解析】
(1)直线与x轴、y轴的交点分别为A、C,确定出A、C的坐标,根据求得PB的长,进而求得OB的长,进而确定出P坐标,代入反比例解析式即可求出k的值;
(2)根据先求出,再设G(a,),列出关于a的方程,求出方程的解确定出G坐标.
解:(1)对于直线,
令,得到,即,;令,得到,即,,
轴,轴,
,
,
,
设,则有,
代入比例式得:,即,
解得:,
,,即,
,
将代入反比例解析式得:;
(2);
假设存在一点G,使得的面积等于的面积,
设,则有,即,
解得:或,
存在一点G,使得的面积等于的面积,G点坐标为或.
科目:初中数学 来源: 题型:
【题目】已知:如图所示的两条抛物线的解析式分别是y1=-ax2-ax+1,y2=ax2-ax-1(其中a为常数,且a>0).
(1)请写出三条与上述抛物线有关的不同类型的结论;
(2)当a=时,设y1=-ax2-ax+1与x轴分别交于M,N两点(M在N的左边),y2=ax2-ax-1与x轴分别交于E,F两点(E在F的左边),观察M,N,E,F四点坐标,请写出一个你所得到的正确结论,并说明理由;
(3)设上述两条抛物线相交于A,B两点,直线l,l1,l2都垂直于x轴,l1,l2分别经过A,B两点,l在直线l1,l2之间,且l与两条抛物线分别交于C,D两点,求线段CD的最大值?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】学校为表彰在“了不起我的国”演讲比赛中获奖的选手,决定购买甲、乙两种图书作为奖品.已知购买30本甲种图书,50本乙种图书共需1350元;购买50本甲种图书,30本乙种图书共需1450元.
(1)求甲、乙两种图书的单价分别是多少元?
(2)学校要求购买甲、乙两种图书共40本,且甲种图书的数量不少于乙种图书数量的,请设计最省钱的购书方案.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】为提高饮水质量,越来越多的居民选择家用净水器,光明商场计划从生产厂家购进甲、乙两种型号的家用净水器,甲型号净水器进价为160元/台,乙型号净水器进价为280元/台,经过协商沟通,生产厂家拿出了两种优惠方案:第一种优惠方案:甲、乙两种型号净水器均按进价的8折收费;第二种优惠方案:甲型号净水器按原价收费,乙型号净水器的进货量超过10台后超过的部分按进价的6折收费.
光明商场只能选择一种优惠方案,已知光明商场计划购进甲型号净水器数量是乙型号净水器数量的1.5倍,设光明商场购进乙型号净水器台,选择第一种优惠方案所需费用为片元,选择第二种优惠方案所需费用为元.
(1)分别求出、与的关系式:
(2)光明商场计划购进乙型号净水器40台,请你为光明商场选择合适的优惠方案,并说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,CD是⊙O的直径,点A是半圆上的三等分点,B是弧AD的中点,P点为直线CD上的一个动点,当CD=6时,AP+BP的最小值为_____.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在⊙O中,AB为直径,C为⊙O上一点.
(Ⅰ)如图①,过点C作⊙O的切线,与AB的延长线相交于点P,若∠CAB=32°,求∠P的大小;
(Ⅱ)如图②,D为优弧ADC上一点,且DO的延长线经过AC的中点E,连接DC与AB相交于点P,若∠CAB=16°,求∠DPA的大小.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】我校小伟同学酷爱健身,一天去爬山锻炼,在出发点C处测得山顶部A的仰角为30度,在爬山过程中,每一段平路(CD、EF、GH)与水平线平行,每一段上坡路(DE、FG、HA)与水平线的夹角都是45度,在山的另一边有一点B(B、C、D同一水平线上),斜坡AB的坡度为2:1,且AB长为900,其中小伟走平路的速度为65.7米/分,走上坡路的速度为42.3米/分.则小伟从C出发到坡顶A的时间为( )(图中所有点在同一平面内≈1.41,≈1.73)
A.60分钟B.70分钟C.80分钟D.90分钟
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,矩形EFGH的顶点E,G分别在菱形ABCD的边AD,BC上,顶点F,H在菱形ABCD的对角线BD上.
(1)求证:BG=DE;
(2)若E为AD中点,FH=2,求菱形ABCD的周长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,CD是⊙O的直径,点B在⊙O上,连接BC、BD,直线AB与CD的延长线相交于点A,AB2=ADAC,OE∥BD交直线AB于点E,OE与BC相交于点F.
(1)求证:直线AE是⊙O的切线;
(2)若⊙O的半径为3,cosA=,求OF的长.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com