精英家教网 > 初中数学 > 题目详情

在直角梯形ABCD中,AD∥BC,∠B=90°,E为AB上一点,且DE平分∠ADC,CE平分∠BCD,则下列结论中:①DE⊥EC,②AD•BC=BE•DE,③CE2=BC•CD,④AE2=AD•BC,⑤AD+BC=DC;正确的有


  1. A.
    2个
  2. B.
    3个
  3. C.
    4个
  4. D.
    5个
B
分析:①运用角平分线的性质及平行线的性质,易得到∠ADC+∠BCD=90°.再通过三角形的内角和为180°,求得∠CED=90°,问题得证.
②首先假设AD•BC=BE•DE成立.利用直角三角形中一条直角边所对的角对应相等,证得△BCE∽△AED,再运用相似三角形的性质证得AD•CE=BE•DE.从而得到BC=CE.与直角三角形的斜边大于一条直角边矛盾.
③在△BCE与△ECD中,利用相似三角形的判定与性质,证得CE2=BC•CD.
④利用相似三角形的性质证得AE≠BE,使问题得证.
⑤过E作EF⊥CD与点F.通过角边角定理证得Rt△BCE≌Rt△FCE,Rt△AED≌Rt△FED.再利用全等三角形的性质证得BC=FC,AD=FD.问题得解.
解答:解:①∵DE平分∠ADC,CE平分∠BCD
∴∠ADE=∠CDE=∠ADC,∠BCE=∠DCE=∠BCD,
∵AD∥BC,
∴∠ADC+∠BCD=180°,
∴∠ADE+∠BCE=(∠ADC+∠BCD)=×180°=90°,
在△CDE中,∠CED=180°-(∠ADC+∠BCD)=90°
∴DE⊥EC;
故该项成立.
②假设AD•BC=BE•DE成立.
由①知,∠CED=90°
∴∠AED+∠BEC=180°-∠CED=180°-90°=90°,
在Rt△BCE中,∠BCE+∠BEC=90°,
∴∠AED=∠BCE
∵AD∥BC,∠B=90°,
∴∠A=90°,
∴△BCE∽△AED,
,即AD•CE=BE•DE,
∴BC=CE,
∵直角三角形的斜边>它的直角边
∴AD•BC=BE•DE不成立.
故该项不成立.
③∵CE平分∠BCD,
∴∠BCE=∠ECD,
由①知,∠CED=90°=∠B,
∴△BCE∽△ECD,
,即CE2=BC•CD,
故该项成立.
④由②知,△BCE∽△AED,
,即AE•BE=AD•BC,
显然AE≠BE,
故该选项不成立.
⑤过E作EF⊥CD与点F,
∵DE平分∠ADC,CE平分∠BCD
∴∠ADE=∠CDE,∠BCE=∠DCE,
∴Rt△BCE≌Rt△FCE,Rt△AED≌Rt△FED,
∴BC=FC,AD=FD,
又∵CF+FD=BC,
∴AD+BC=DC,
故该选项正确.
综上所述,正确的有①③⑤三个.
故选B.
点评:本题考查相似三角形的判定与性质、全等三角形的判定与性质、直角三角形的判定与性质.解决本题的关键是熟练掌握三角形全等、相似的三角形判定定理、性质定理,做到灵活运用.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

如图①,在直角梯形ABCD中,∠B=90°,DC∥AB,动点P从B点出发,由B→C→D→A沿边运动,设点P运动的路程为x,△ABP的面积为y,若关于y与x的函数图象如图②,求梯形ABCD的面积.
精英家教网

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,在直角梯形ABCD中,AB∥DC,∠D=90°,若AD=8,BC=10,则cosC的值为(  )
A、
4
5
B、
3
5
C、
3
4
D、
4
3

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在直角梯形ABCD中,AD∥BC,AB⊥BC,且AB=BC=4AD,E是AB上的一点,DE⊥EC.求证:CE平分∠BCD.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在直角梯形ABCD中,∠A=∠B=90°,∠C=45°,AB=4,AD=5,把梯形沿过点D的直线折叠,使点A刚好落在BC边上,则此时折痕的长为
5
5
2
或2
5
5
5
2
或2
5

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在直角梯形ABCD中,若AD=5,点A的坐标为(-2,7),则点D的坐标为(  )

查看答案和解析>>

同步练习册答案