【题目】如图,AC是⊙O的直径,AB与⊙O相切于点A.四边形ABCD是平行四边形,BC交⊙O于点E.
(1)证明直线CD与⊙O相切;
(2)若⊙O的半径为5 cm,弦CE的长为8 cm,求AB的长.
【答案】(1)见解析;(2) 7.5 cm.
【解析】
(1)根据题意,易得∠CAB=90°,又由四边形ABCD是平行四边形,结合平行四边形的性质AB∥CD,可得∠CAB=∠ACD=90°,故直线CD与⊙O相切;
(2)连接AE,易得△CAE∽△CBA,进而可得=,在Rt△CAE中,由勾股定理可得AE的值,代入关系式,可得答案.
解:(1)直线CD与⊙O相切.
理由如下:
∵AC是⊙O的直径,AB与⊙O相切于点A,
∴AC⊥AB,∴∠CAB=90.
∵在□ABCD中,AB∥CD,∴∠ACD=90,
∴AC⊥CD.
∵点C在⊙O上,
∴直线CD与⊙O相切;
(2)如图,连接AE,则AE⊥BC,
在Rt△CAE中,
AE===6 cm.
由△CAE∽△CBA,得=,
∴AB=7.5 cm.
故答案为:(1)证明过程见解析;(2)7.5 cm.
科目:初中数学 来源: 题型:
【题目】端午节期间,某食品店平均每天可卖出300只粽子,卖出1只粽子的利润是1元.经调查发现,零售单价每降0.1元,每天可多卖出100只粽子.为了使每天获取的利润更多,该店决定把零售单价下降m(0<m<1)元.
(1)零售单价下降m元后,该店平均每天可卖出_____只粽子,利润为_____元.
(2)在不考虑其他因素的条件下,当m定为多少时,才能使该店每天获取的利润是420元并且卖出的粽子更多?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在二次函数y=-x2+bx+c中,函数y与自变量x的部分对应值如下表:
x | …… | -2 | 0 | 3 | 4 | …… |
y | …… | -7 | m | n | -7 | …… |
则m、n的大小关系为( )
A. m>n B. m<n C. m=n D. 无法确定
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】对于函数(k>0)有以下四个结论:
①这是y关于x的反比例函数;②当x>0时,y的值随着x的增大而减小;③函数图象与x轴有且只有一个交点;④函数图象关于点(0,3)成中心对称.
其中正确的是( )
A. B. C. D.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系xOy中,对正方形ABCD及其内部的每个点进行如下操作:把每个点的横、纵坐标都乘以同一个实数a,将得到的点先向右平移m个单位,再向上平移n个单位(m>0,n>0),得到正方形A'B'C'D'及其内部的点,其中点A、B的对应点分别为A',B'.已知正方形ABCD内部的一个点F经过上述操作后得到的对应点F'与点F重合,则点F的坐标是( )
A. (1,4) B. (1,5) C. (﹣1,4) D. (4,1)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,四边形ABCD中,∠A=∠B=90°,P是线段AB上的一个动点.
(1)若AD=2,BC=6,AB=8,且以A,D,P为顶点的三角形与以B,C,P为顶点的三角形相似,求AP的长;
(2)若AD=a,BC=b,AB=m,则当a,b,m满足什么关系时,一定存在点P使△ADP∽△BPC?并说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,∠AOB=90°,∠OAB=30°,反比例函数y1=的图象经过点A,反比例函数y2=的图象经过点B,则下列关于m,n的关系正确的是( )
A. m=-3n B. m=-n C. m=-n D. m=n
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com