精英家教网 > 初中数学 > 题目详情

【题目】某港口位于东西方向的海岸线上.远航号、海天号轮船同时离开港口,各自沿一固定方向航行,远航号每小时航行16海里,海天号每小时航行12海里.它们离开港口一个半小时后相距30海里.如果知道远航号沿东北方向航行,能知道海天号沿哪个方向航行?为什么?

【答案】“海天”号沿西北方向航行

【解析】试题分析:根据路程=速度×时间分别求得PQ、PR的长,再进一步根据勾股定理的逆定理可以证明三角形PQR是直角三角形,从而求解.

试题解析:根据题意,得

PQ=16×1.5=24(海里),PR=12×1.5=18(海里),QR=30(海里).

∵242+182=302

即PQ2+PR2=QR2

∴∠QPR=90°.

由“远航号”沿东北方向航行可知,∠QPS=45°,则∠SPR=45°,即“海天”号沿西北方向航行.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,已知在平面直角坐标系中,三角形ABC的位置如图所示.

(1)请写出A、B、C三点的坐标;

(2)你能想办法求出三角形ABC的面积吗?

(3)将三角形ABC向右平移6个单位,再向上平移2个单位,请在图中作出平移后的三角形A′ B′ C′,并写出三角形A′ B′ C各点的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,边长为2的等边△ABC和边长为1的等边△A′B′C′,它们的边B′C′,BC位于同一条直线l上,开始时,点C′与B重合,△ABC固定不动,然后把△A′B′C′自左向右沿直线l平移,移出△ABC外(点B′与C重合)停止,设△A′B′C′平移的距离为x,两个三角形重合部分的面积为y,则y关于x的函数图象是( )

A.
B.
C.
D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,直线AB,CD被直线BD,DF所截,AB∥CD,FB⊥DB,垂足为B,EG平分∠DEB,∠CDE=52°,

∠F=26°.

(1)求证:EG⊥BD;(2)求∠CDB的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图所示,小明在大楼30米高(即PH=30米)的窗口P处进行观测,测得山坡上A处的俯角为15°,山脚B处的俯角为60°,已知该山坡的坡度i(即tan∠ABC)为1: ,点P、H、B、C、A在同一个平面上.点H、B、C在同一条直线上,且PH⊥HC.

(1)山坡坡角(即∠ABC)的度数等于度;
(2)求山坡A、B两点间的距离(结果精确到0.1米).
(参考数据: ≈1.414, ≈1.732)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】一个零件的形状如图1所示按规定这个零件中∠A和∠DBC都应为直角.工人师傅量得这个零件各边尺寸如图2所示.

1 2

(1)你认为这个零件符合要求吗?为什么?

(2)求这个零件的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在△ABC中,BF平分∠ABC,AF⊥BF于点F,D为AB的中点,连接DF延长交AC于点E.若AB=10,BC=16,则线段EF的长为(
A.2
B.3
C.4
D.5

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某校为了进一步改进本校七年级数学教学,提高学生学习数学的兴趣,校教务处在七年级所有班级中,每班随机抽取了6名学生,并对他们的数学学习情况进行了问卷调查.我们从所调查的题目中,特别把学生对数学学习喜欢程度的回答(喜欢程度分为:“A﹣非常喜欢”、“B﹣比较喜欢”、“C﹣不太喜欢”、“D﹣很不喜欢”,针对这个题目,问卷时要求每位被调查的学生必须从中选一项且只能选一项)结果进行了统计,现将统计结果绘制成如下两幅不完整的统计图.
请你根据以上提供的信息,解答下列问题:
(1)补全上面的条形统计图和扇形统计图;
(2)所抽取学生对数学学习喜欢程度的众数是
(3)若该校七年级共有960名学生,请你估算该年级学生中对数学学习“不太喜欢”的有多少人?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】一个长方形的长是,宽是,周长是,面积是

1)写出变化而变化的关系式;

2)写出变化而变化的关系式;

3)当时, 等于多少? 等于多少?

4)当增加时, 增加多少? 增加多少?

查看答案和解析>>

同步练习册答案