精英家教网 > 初中数学 > 题目详情

【题目】如图,在△ABC中,AB=AC,BAC=50°,BAC的平分线与AB的垂直平分线交于点O,将∠C沿EF(EBC上,FAC上)折叠,点C与点O恰好重合,则∠CFE________度.

【答案】50°

【解析】

连接OB,OC,先求出∠BAO=25°,进而求出∠OBC=40°,求出∠COE=∠OCB=40°,最后根据等腰三角形的性质,问题即可解决.

解:如图,连接OB,

∵∠BAC=50°,AO为∠BAC的平分线,

∴∠BAO=∠BAC=×50°=25°.

又∵AB=AC,

∴∠ABC=∠ACB=65°.

∵DOAB的垂直平分线,

∴OA=OB,

∴∠ABO=∠BAO=25°,

∴∠OBC=∠ABC-∠ABO=65°-25°=40°.

∵AO为∠BAC的平分线,AB=AC,

∴直线AO垂直平分BC,

∴OB=OC,

∴∠OCB=∠OBC=40°,

∵将∠C沿EF(EBC上,FAC上)折叠,点C与点O恰好重合,

∴OE=CE.

∴∠COE=∠OCB=40°;

在△OCE中,∠OEC=180°-∠COE-∠OCB=180°-40°-40°=100°,

∴∠CEF=∠CEO=50°.

故答案为:50°.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】某科技有限公司准备购进AB两种机器人来搬运化工材料,已知购进A种机器人2个和B种机器人3个共需16万元;购进A种机器人3个和B种机器人2个共需14万元.请解答下列问题:
(1)求AB两种机器人每个的进价;
(2)已知该公司购买B种机器人的个数比购买A种机器人的个数的2倍多4个,如果需要购买AB两种种机器人的总个数不少于28个,且该公司购买的AB两种种机器人的总费用不超过106万元,那么该公司有哪几种购买方案?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知,BC∥OA,∠B=∠A=100°,试回答下列问题:

(1)如图①,求证:OB∥AC.

(2)如图②,若点E、F在线段BC上,且满足∠FOC=∠AOC,并且OE平分∠BOF.求∠EOC的度数.

(3)在(2)的条件下,若平行移动AC,如图③,那么∠OCB:∠OFB的值是否随之发生变化?若变化,试说明理由;若不变,求出这个比值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】二次函数y=ax+bx+c的图像如图所示,则代数式(a+b)-c的值( ).

A.大于0
B.等于0
C.小于0
D.不确定

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,平面直角坐标系中,A(1,0)、B(0,2),BA=BC,ABC=90°,则点 C 的坐标为___________

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知,ADABC的内角平线,交BCD点,DEAB,DFAC,垂足分别为E、F,连结EF,

(1)请根据上述几何语言,画出完整的图形,作∠BAC的角平分线AD要求尺规作图,(保留作图痕迹,不写作法);

(2)判断AD是否为EF的垂直平分线,并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,是抛物线y=ax2+bx+c(a≠0)图象的一部分,已知抛物线的对称轴为x=2,与x轴的一个交点是(﹣1,0).下列结论:
①ac<0;
②4a﹣2b+c>0;
③抛物线与x轴的另一个交点是(4,0);
④点(﹣3,y1),(6,y2)都在抛物线上,则有y1<y2 . 其中正确的个数为( )

A.1
B.2
C.3
D.4

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在 ABC中,AD平分 BAC,按如下步骤作图:
第一步,分别以点A、D为圆心,以大于 AD的长为半径在AD两侧做弧,交于两点M、N;
第二步,连接MN分别交AB、AC于点E、F;
第三步,连接DE、DF.
若BD=6,AF=4,CD=3,则BE的长是( ).

A.2
B.4
C.6
D.8

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知AC⊥BC,AD⊥BD,E为AB的中点,

(1)如图1,求证:ECD是等腰三角形;

(2)如图2,CD与AB交点为F,若AD=BD,EF=3,DE=4,求CD的长.

查看答案和解析>>

同步练习册答案