【题目】已知抛物线y=ax2﹣2ax+c与x轴一个交点的坐标为(﹣1,0),则一元二次方程ax2﹣2ax+c=0的根为
【答案】﹣1,3
【解析】解法一:将x=﹣1,y=0代入y=ax2﹣2ax+c得:a+2a+c=0.
解得:c=﹣3a.
将c=﹣3a代入方程得:ax2﹣2ax﹣3a=0.
∴a(x2﹣2x﹣3)=0.
∴a(x+1)(x﹣3)=0.
∴x1=﹣1,x2=3.
解法二:已知抛物线的对称轴为x= =1,又抛物线与x轴一个交点的坐标为(﹣1,0),则根据对称性可知另一个交点坐标为(3,0);故而ax2﹣2ax+c=0的两个根为﹣1,3
所以答案是:﹣1,3.
【考点精析】解答此题的关键在于理解抛物线与坐标轴的交点的相关知识,掌握一元二次方程的解是其对应的二次函数的图像与x轴的交点坐标.因此一元二次方程中的b2-4ac,在二次函数中表示图像与x轴是否有交点.当b2-4ac>0时,图像与x轴有两个交点;当b2-4ac=0时,图像与x轴有一个交点;当b2-4ac<0时,图像与x轴没有交点.
科目:初中数学 来源: 题型:
【题目】已知数轴上两点 A、B 所表示的数分别为 a 和 b,且满足|a+3|+(b-9)2018=0,O 为原点.
(1) 试求 a 和 b 的值
(2) 点 C 从 O 点出发向右运动,经过 3 秒后点 C 到 A 点的距离是点 C 到 B 点距离的 3 倍,求点 C 的运动速 度?
(3) 点 D 以 1 个单位每秒的速度从点 O 向右运动,同时点 P 从点 A 出发以 5 个单位每秒的速度向左运动, 点 Q 从点 B 出发,以 20 个单位每秒的速度向右运动.在运动过程中,M、N 分别为 PD、OQ 的中点,问的值是否发生变化,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】(10分)已知:如图,在△ABC中,AB=AC,AD⊥BC,垂足为点D,AN是△ABC外角∠CAM的平分线,CE⊥AN,垂足为点E,猜想四边形ADCE的形状,并给予证明.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,△AOB中,A(-8,0),B(0, ),AC平分∠OAB,交y轴于点C,点P是x轴上一点,⊙P经过点A、C,与x轴于点D,过点C作CE⊥AB,垂足为E,EC的延长线交x轴于点F,
(1)求⊙P的半径;
(2)求证:EF为⊙P的切线;
(3)若点H是 上一动点,连接OH、FH,当点P在 上运动时,试探究 是否为定值?若为定值,求其值;若不是定值,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】今年11月读书节,深圳市统计某学校九年级学生读书状况,制作了两幅不完整的统计图如图所示.
(1)x的值为 ,参加调查的总人数为 人;
(2)补全条形统计图;
(3)若全市有6.7万学生,则看3本及3本书以上的学生约有多少人?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,点A在抛物线y=x2﹣2x+2上运动.过点A作AC⊥x轴于点C,以AC为对角线作矩形ABCD,连结BD,则对角线BD的最小值为
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】二次函数中y=ax2+bx﹣3的x、y满足表:
x | … | ﹣1 | 0 | 1 | 2 | 3 | … |
y | … | 0 | ﹣3 | ﹣4 | ﹣3 | m | … |
(1)求该二次函数的解析式;
(2)求m的值并直接写出对称轴及顶点坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,△ABC中,AB=AC,E、F分别是BC、AC的中点,以AC为斜边作Rt△ADC.
(1)求证:FE=FD;
(2)若∠CAD=∠CAB=24°,求∠EDF的度数
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com