【题目】在△ABC中,∠B=45°,∠C=30°,点D是边BC上一点,连接AD,将线段AD绕点A逆时针旋转90°,得到线段AE,连接DE.
(1)如图①,当点E落在边BA的延长线上时,∠EDC= 度(直接填空);
(2)如图②,当点E落在边AC上时,求证:BD=EC;
(3)当AB=2,且点E到AC的距离等于﹣1时,直接写出tan∠CAE的值.
【答案】(1)90;(2)详见解析;(3)
【解析】
(1)利用三角形的外角的性质即可解决问题;
(2)如图2中,作PA⊥AB交BC于P,连接PE.只要证明△BAD≌△PAE(SAS),提出BD=PE,再证明EC=2PE即可;
(3)如图3,作EF⊥AC于F,延长FE交BC于H,作AG⊥BC于G,PA⊥AB交BC于P,连接PE.设PH=x,在Rt△EPH中,可得EP=x,EH=2PH=2x,
由此FH=2x+﹣1,CF=2x+3﹣,由△BAD≌△PAE,得BD=EP=x,AE=AD,在Rt△ABG中, AG=GB=2,在Rt△AGC中,AC=2AG=4,故AE2=AD2=AF2+EF2,由勾股定理得AF=1+,由此tan∠EAF=2﹣,根据对称性可得tan∠EAC=.
(1)如图1中,
∵∠EDC=∠B+∠BED,∠B=∠BED=45°,
∴∠EDC=90°,
故答案为90;
(2)如图2中,作PA⊥AB交BC于P,连接PE.
∵∠DAE=∠BAP=90°,
∴∠BAD=∠PAE,
∵∠B=45°,
∴∠B=∠APB=45°,
∴AB=AP,
∵AD=AE,
∴△BAD≌△PAE(SAS),
∴BD=PE,∠APE=∠B=45°,
∴∠EPD=∠EPC=90°,
∵∠C=30°,
∴EC=2PE=2BD;
(3)如图3,作EF⊥AC于F,延长FE交BC于H,作AG⊥BC于G,PA⊥AB交BC于P,连接PE.
设PH=x,在Rt△EPH中,∵∠EPH=90°,∠EHP=60°,
∴EP=x,EH=2PH=2x,
∴FH=2x+﹣1,CF=FH=2x+3﹣,
∵△BAD≌△PAE,
∴BD=EP=x,AE=AD,
在Rt△ABG中,∵AB=2,
∴AG=GB=2,
在Rt△AGC中,AC=2AG=4,
∵AE2=AD2=AF2+EF2,
∴22+(2﹣x)2=(﹣1)2+(4﹣2x﹣3+)2,
整理得:9x2﹣12x=0,
解得x=(舍弃)或0
∴PH=0,此时E,P,H共点,
∴AF=1+,
∴tan∠EAF===2﹣.
根据对称性可知当点E在AC的上方时,同法可得tan∠EAC=.
科目:初中数学 来源: 题型:
【题目】红灯笼,象征着阖家团圆,红红火火,挂灯笼成为我国的一种传统文化.小明在春节前购进甲、乙两种红灯笼,用3120元购进甲灯笼与用4200元购进乙灯笼的数量相同,已知乙灯笼每对进价比甲灯笼每对进价多9元.
(1)求甲、乙两种灯笼每对的进价;
(2)经市场调查发现,乙灯笼每对售价50元时,每天可售出98对,售价每提高1元,则每天少售出2对:物价部门规定其销售单价不高于每对65元,设乙灯笼每对涨价x元,小明一天通过乙灯笼获得利润y元.
①求出y与x之间的函数解析式;
②乙种灯笼的销售单价为多少元时,一天获得利润最大?最大利润是多少元?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知,如图,在边长为10的菱形ABCD中,cos∠B=,点E为BC边上的中点,点F为边AB边上一点,连接EF,过点B作EF的对称点B′,
(1)在图(1)中,用无刻度的直尺和圆规作出点B′(不写作法,保留痕迹);
(2)当△EFB′为等腰三角形时,求折痕EF的长度.
(3)当B′落在AD边的中垂线上时,求BF的长度.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,二次函数y=ax2+bx+c(a≠0)的图象经过点A,B,C.现有下面四个推断:①抛物线开口向下;②当x=-2时,y取最大值;③当m<4时,关于x的一元二次方程ax2+bx+c=m必有两个不相等的实数根;④直线y=kx+c(k≠0)经过点A,C,当kx+c> ax2+bx+c时,x的取值范围是-4<x<0;其中推断正确的是 ( )
A. ①②B. ①③C. ①③④D. ②③④
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某超市对今年“元旦”期间销售A、B、C三种品牌的绿色鸡蛋情况进行了统计,并绘制如图所示的扇形统计图和条形统计图.根据图中信息解答下列问题:
(1)该超市“元旦”期间共销售 个绿色鸡蛋,A品牌绿色鸡蛋在扇形统计图中所对应的扇形圆心角是 度;
(2)补全条形统计图;
(3)如果该超市的另一分店在“元旦”期间共销售这三种品牌的绿色鸡蛋1500个,请你估计这个分店销售的B种品牌的绿色鸡蛋的个数?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,从地面上的点A看一山坡上的电线杆PQ,测得杆顶端点P的仰角是45°,向前走6m到达B点,测得杆顶端点P和杆底端点Q的仰角分别是60°和30°.
(1)求∠BPQ的度数;
(2)求该电线杆PQ的高度(结果精确到1m).备用数据:,
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,矩形的顶点在轴的正半轴上,.对角线相交于点,反比例函数的图像经过点,分别与交于点.
(1)若,求的值;
(2)连接,若,求的面积.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中,AC=BC,∠ACB=120°,D是AB中点,一个以点D为顶点的60°角绕点D旋转,使角的两边分别与AC、BC的延长线相交,交点分别为点E,F,DF与AC交于点M,DE与BC交于点N.
(1)如图1,若CE=CF,求证:DE=DF;
(2)如图2,在∠EDF绕点D旋转的过程中:
①探究三条线段AC,CE,CF之间的数量关系,并说明理由;
②若CE=9,CF=4,求CN的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在一次数学综合实践活动中,小明计划测量城门大楼的高度,在点B处测得楼顶A的仰角为22°,他正对着城楼前进21米到达C处,再登上3米高的楼台D处,并测得此时楼顶A的仰角为45°.
(1)求城门大楼的高度;
(2)每逢重大节日,城门大楼管理处都要在A,B之间拉上绳子,并在绳子上挂一些彩旗,请你求出A,B之间所挂彩旗的长度(结果保留整数).(参考数据:sin22°≈,cos22°≈,tan22°≈)
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com