【题目】如图,在△ABC中,AC=BC,∠ACB=120°,D是AB中点,一个以点D为顶点的60°角绕点D旋转,使角的两边分别与AC、BC的延长线相交,交点分别为点E,F,DF与AC交于点M,DE与BC交于点N.
(1)如图1,若CE=CF,求证:DE=DF;
(2)如图2,在∠EDF绕点D旋转的过程中:
①探究三条线段AC,CE,CF之间的数量关系,并说明理由;
②若CE=9,CF=4,求CN的长.
【答案】(1)证明见解析(2)①见解析②
【解析】
(1)证明△DCE≌△DCF(SAS),即可解决问题.
(2)①证明△CDF∽△CED,可得,即CD2=CECF,再证明AC=2CD即可解决问题.
②作DK∥AE交BC于K.利用平行线分线段成比例定理即可解决问题.
(1)证明:如图1中,连接CD.
∵∠ACB=120°,AC=BC,AD=BD,
∴∠BCD=∠ACD=60°,∠BCE=∠ACF=60°.
∴∠DCE=∠DCF=120°.
又∵CE=CF,CD=CD,
∴△DCE≌△DCF(SAS),
∴DE=DF;
(2)①如图2中,连接CD.
∵∠DCF=∠DCE=120°,
∴∠CDF+∠F=180°-120°=60°.
又∵∠CDF+∠CDE=60°,∴∠F=∠CDE.
∴△CDF∽△CED,
∴,即CD2=CECF.
∵∠ACB=120°,AC=BC,AD=BD,
∴CD=AC.
∴AC2=4CECF.
②作DK∥AE交BC于K.
∵AC2=4CECF=144,
∴AC=BC=12,
∵AD=BD.DK∥AC,
∴CK=KB=6,
∴DK=AC=6,
∵ ,
∴CN=CK=.
科目:初中数学 来源: 题型:
【题目】某公司为了调动员工的积极性,决定实行目标管理,即确定个人年利润目标,根据目标完成的情况对员工进行适当的奖惩.为了确定这一目标,公司对上一年员工所创的年利润进行了抽样调查,并制成了如右的统计图.
(1)求样本容量,并补全条形统计图;
(2)求样本的众数,中位数和平均数;
(3)如果想让一半左右的员工都能达到目标,你认为个人年利润定为多少合适?如果想确定一个较高的目标,个人年利润又该怎样定才合适?并说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在△ABC中,∠B=45°,∠C=30°,点D是边BC上一点,连接AD,将线段AD绕点A逆时针旋转90°,得到线段AE,连接DE.
(1)如图①,当点E落在边BA的延长线上时,∠EDC= 度(直接填空);
(2)如图②,当点E落在边AC上时,求证:BD=EC;
(3)当AB=2,且点E到AC的距离等于﹣1时,直接写出tan∠CAE的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】自我省深化课程改革以来,某校开设了:A.利用影长求物体高度,B.制作视力表,C.设计遮阳棚,D.制作中心对称图形,四类数学实践活动课.规定每名学生必选且只能选修一类实践活动课,学校对学生选修实践活动课的情况进行抽样调查,将调查结果绘制成如下两幅不完整的统计图.
根据图中信息解决下列问题:
(1)本次共调查名学生,扇形统计图中B所对应的扇形的圆心角为度;
(2)补全条形统计图;
(3)选修D类数学实践活动的学生中有2名女生和2名男生表现出色,现从4人中随机抽取2人做校报设计,请用列表或画树状图法求所抽取的两人恰好是1名女生和1名男生的概率.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,抛物线(a≠0)与y轴交与点C(0,3),与x轴交于A、B两点,点B坐标为(4,0),抛物线的对称轴方程为x=1.
(1)求抛物线的解析式;
(2)点M从A点出发,在线段AB上以每秒3个单位长度的速度向B点运动,同时点N从B点出发,在线段BC上以每秒1个单位长度的速度向C点运动,其中一个点到达终点时,另一个点也停止运动,设△MBN的面积为S,点M运动时间为t,试求S与t的函数关系,并求S的最大值;
(3)在点M运动过程中,是否存在某一时刻t,使△MBN为直角三角形?若存在,求出t值;若不存在,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】设m,n是任意两个实数,规定m,n两数较大的的数称作这两个数的“绝对最值”,用sec(m,n)表示。例如:sec(-1,-2)=-1,sec(1,2)=2,sec(0,0)=0,参照上面的材料,解答下列问题:
(1)sec(,3.14)=________,sec(,)=__________;
(2)若sec(-3x-1,x+1)=-3x-1,求x的取值范围;
(3)求函数与的图象的交点坐标,函数图象如图所示,请你在图中作出函数的图象,并根据图象直接写出sec(-x+2, )的最小值。
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】“机动车行驶到斑马线要礼让行人”等交通法规实施后,某校数学课外实践小组就对这些交通法规的了解情况在全校随机调查了部分学生,调查结果分为四种:A.非常了解,B.比较了解,C.基本了解,D.不太了解,实践小组把此次调查结果整理并绘制成下面不完整的条形统计图和扇形统计图.
请结合图中所给信息解答下列问题:
(1)填空:本次共调查_____名学生;扇形统计图中C所对应扇形的圆心角度数是_____°;
(2)请直接补全条形统计图;
(3)填空:扇形统计图中,m的值为_____;
(4)该校共有500名学生,根据以上信息,请你估计全校学生中对这些交通法规“非常了解”的约有多少名?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在布袋中装有两个大小一样,质地相同的球,其中一个为红色,一个为白色、模拟“摸出一个球是白球”的机会,可以用下列哪种替代物进行实验( )
A. “抛掷一枚普通骰子出现1点朝上”的机会
B. “抛掷一枚啤酒瓶盖出现盖面朝上”的机会
C. “抛掷一枚质地均匀的硬币出现正面朝上”的机会
D. “抛掷一枚普通图钉出现针尖触地”的机会
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com