精英家教网 > 初中数学 > 题目详情
14.今年3月12日,某学校开展植树活动,某植树小组20名同学的年龄情况如下表:
 年龄(岁) 12 13 14 15 16
 人数 1 4 3 5 7
则这20名同学年龄的众数和中位数分别是(  )
A.15,14B.15,15C.16,14D.16,15

分析 众数即为出现次数最多的数,所以从中找到出现次数最多的数即可;中位数是排序后位于中间位置的数,或中间两数的平均数.

解答 解:∵12岁有1人,13岁有4人,14岁有3人,15岁有5人,16岁有7人,
∴出现次数最多的数据是16,
∴同学年龄的众数为16岁;
∵一共有20名同学,
∴因此其中位数应是第10和第11名同学的年龄的平均数,
∴中位数为(15+15)÷2=15,
故中位数为15.
故选D.

点评 此题考查了众数和中位数,众数是一组数据中出现次数最多的数,中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:选择题

4.如图,抛物线y=-x2+ax+4与x轴负半轴交于点A,与y轴交于点B,且tan∠ABO=$\frac{1}{4}$,点C(x1,y1),D(x2,y2)是抛物线y=-x2+ax+4上两点,当x1≤x≤x2,y的取值范围为$\frac{12}{{x}_{2}}$≤y≤$\frac{12}{{x}_{1}}$.则下列结论正确的是(  )
A.a=-3B.y2<4C.|x1-x2|=1D.|x1-$\frac{3}{2}$|>|x2-$\frac{3}{2}$|

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

5.如图,⊙M的圆心M(-1,2),⊙M经过坐标原点O,与y轴交于点A.经过点A的一条直线l解析式为:y=-$\frac{1}{2}$x+4与x轴交于点B,以M为顶点的抛物线经过x轴上点D(2,0)和点C(-4,0).
(1)求抛物线的解析式;
(2)求证:直线l是⊙M的切线;
(3)点P为抛物线上一动点,且PE与直线l垂直,垂足为E;PF∥y轴,交直线l于点F,是否存在这样的点P,使△PEF的面积最小.若存在,请求出此时点P的坐标及△PEF面积的最小值;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

2.已知(a+b)2=49,(a-b)2=1,那么代数式a2+b2=25.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

9.已知:如图,AD⊥BC于D,EG⊥BC于G,∠E=∠3,试问:AD是∠BAC的平分线吗?若是,请说明理由.
解:是,理由如下:
∵AD⊥BC,EG⊥BC(已知)
∴∠4=∠5=90°(垂直的定义)
∴AD∥EG(同位角相等,两直线平行)
∴∠1=∠E(两直线平行,同位角相等)
∠2=∠3(两直线平行,内错角相等)
∵∠E=∠3(已知)
∴∠1=∠2
∴AD是∠BAC的平分线(角平分线的定义)

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

19.把一张长方形纸片按如图①、图②的方式从右向左连续对折两次后得到图③,再在图③中挖去一个如图所示的三角形小孔,则重新展开后得到的图形是(  )
A.B.C.D.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

6.同时抛掷两枚质地均匀的硬币,两枚硬币全部正面向上的概率为(  )
A.$\frac{1}{4}$B.$\frac{1}{3}$C.$\frac{1}{2}$D.$\frac{3}{4}$

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

3.如图,把△ABC沿着BC的方向平移到△DEF的位置,它们重叠部分的面积是△ABC面积的一半,若BC=$\sqrt{3}$,则△ABC移动的距离是(  )
A.$\frac{\sqrt{3}}{2}$B.$\frac{\sqrt{3}}{3}$C.$\frac{\sqrt{6}}{2}$D.$\sqrt{3}$-$\frac{\sqrt{6}}{2}$

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

4.如图,将?ABCD沿EF对折,使点A落在点C处,若∠A=60°,AD=4,AB=6,则AE的长为$\frac{19}{4}$.

查看答案和解析>>

同步练习册答案