【题目】如图,两个全等的△ABC和△DEF重叠在一起,固定△ABC,将△DEF进行如下变换:
(1)如图1,△DEF沿直线CB向右平移(即点F在线段CB上移动),连接AF、AD、BD,请直接写出S△ABC与S四边形AFBD的关系
(2)如图2,当点F平移到线段BC的中点时,若四边形AFBD为正方形,那么△ABC应满足什么条件:请给出证明;
(3)在(2)的条件下,将△DEF沿DF折叠,点E落在FA的延长线上的点G处,连接CG,请你画出图形,此时CG与CF有何数量关系.
【答案】解:(1)S△ABC=S四边形AFBD ,
理由:由题意可得:AD∥EC,
则S△ADF=S△ABD ,
故S△ACF=S△ADF=S△ABD ,
则S△ABC=S四边形AFBD;
(2)△ABC为等腰直角三角形,即:AB=AC,∠BAC=90°,
理由如下:
∵F为BC的中点,
∴CF=BF,
∵CF=AD,
∴AD=BF,
又∵AD∥BF,
∴四边形AFBD为平行四边形,
∵AB=AC,F为BC的中点,
∴AF⊥BC,
∴平行四边形AFBD为矩形
∵∠BAC=90°,F为BC的中点,
∴AF=BC=BF,
∴四边形AFBD为正方形;
(3)如图3所示:
由(2)知,△ABC为等腰直角三角形,AF⊥BC,
设CF=k,则GF=EF=CB=2k,
由勾股定理得:CG=k,
∴CG=CF.
【解析】(1)利用平行线的性质以及三角形面积关系,得出答案;
(2)利用平行四边形的判定得出四边形AFBD为平行四边形,进而得出AF=BC=BF,求出答案;
(3)根据题意画出图形,设CF=k,利用勾股定理求出即可.
【考点精析】关于本题考查的平行线的性质和勾股定理的概念,需要了解两直线平行,同位角相等;两直线平行,内错角相等;两直线平行,同旁内角互补;直角三角形两直角边a、b的平方和等于斜边c的平方,即;a2+b2=c2才能得出正确答案.
科目:初中数学 来源: 题型:
【题目】如图,把△ABC纸片沿DE折叠,当点A落在四边形BCDE内部时,则∠A与∠1+∠2之间有一种数量关系始终保持不变,请试着找一找这个规律,这个规律是( )
A.∠A=∠1+∠2
B.2∠A=∠1+∠2
C.3∠A=2∠1+∠2
D.3∠A=2(∠1+∠2)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】石墨烯(Graphene)是从石墨材料中剥离出来、由碳原子组成的只有一层原子厚度的二维晶体.石墨烯一层层叠起来就是石墨,厚1毫米的石墨大约包含300万层石墨烯.300万用科学记数法表示为( )
A. 3×106 B. 30×105 C. 300×104 D. 3000000
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】黔东南州某中学为了解本校学生平均每天的课外学习实践情况,随机抽取部分学生进行问卷调查,并将调查结果分为A,B,C,D四个等级,设学生时间为t(小时),A:t<1,B:1≤t<1.5,C:1.5≤t<2,D:t≥2,根据调查结果绘制了如图所示的两幅不完整的统计图.请你根据图中信息解答下列问题:
(1)本次抽样调查共抽取了多少名学生?并将条形统计图补充完整;
(2)本次抽样调查中,学习时间的中位数落在哪个等级内?
(3)表示B等级的扇形圆心角α的度数是多少?
(4)在此次问卷调查中,甲班有2人平均每天课外学习时间超过2小时,乙班有3人平均每天课外学习时间超过2小时,若从这5人中任选2人去参加座谈,试用列表或化树状图的方法求选出的2人来自不同班级的概率.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】把多项式(x﹣2)2﹣4x+8因式分解开始出现错误的一步是__
解:原式=(x﹣2)2﹣(4x﹣8)…A
=(x﹣2)2﹣4(x﹣2)…B
=(x﹣2)(x﹣2+4)…C
=(x﹣2)(x+2)…D.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图, 在平面直角坐标系中,点A,B分别是轴正半轴, 轴正半轴上两动点, , ,以AO,BO为邻边构造矩形AOBC,抛物线交轴于点D,P为顶点,PM⊥轴于点M.
(1)求, 的长(结果均用含的代数式表示).
(2)当时,求该抛物线的表达式.
(3)在点在整个运动过程中.
①若存在是等腰三角形,请求出所有满足条件的的值.
②当点A关于直线DP的对称点恰好落在抛物线的图象上时,请直接写出的值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com