【题目】如图1,已知平行四边形ABCD顶点A的坐标为(2,6),点B在y轴上,且AD∥BC∥x轴,过B,C,D三点的抛物线y=ax2+bx+c(a≠0)的顶点坐标为(2,2),点F(m,6)是线段AD上一动点,直线OF交BC于点E.
(1)求抛物线的表达式;
(2)设四边形ABEF的面积为S,请求出S与m的函数关系式,并写出自变量m的取值范围;
(3)如图2,过点F作FM⊥x轴,垂足为M,交直线AC于P,过点P作PN⊥y轴,垂足为N,连接MN,直线AC分别交x轴,y轴于点H,G,试求线段MN的最小值,并直接写出此时m的值.
【答案】
(1)
解:∵过B,C,D三点的抛物线y=ax2+bx+c(a≠0)的顶点坐标为(2,2),
∴点C的横坐标为4,BC=4,
∵四边形ABCD为平行四边形,
∴AD=BC=4,
∵A(2,6),
∴D(6,6),
设抛物线解析式为y=a(x﹣2)2+2,
∵点D在此抛物线上,
∴6=a(6﹣2)2+2,
∴a= ,
∴抛物线解析式为y= (x﹣2)2+2= x2﹣x+3
(2)
解:∵AD∥BC∥x轴,且AD,BC间的距离为3,BC,x轴的距离也为3,F(m,6)
∴E( ,3),
∴BE= ,
∴S= (AF+BE)×3= (m﹣2+ )×3= m﹣3
∵点F(m,6)是线段AD上,
∴2<m≤6,
即:S= m﹣3(2<m≤6)
(3)
解:方法一、∵抛物线解析式为y= x2﹣x+3,
∴B(0,3),C(4,3),
∵A(2,6),
∴直线AC解析式为y=﹣ x+9,
∵FM⊥x轴,垂足为M,交直线AC于P
∴P(m,﹣ m+9),(2<m≤6)
∴PN=m,PM=﹣ m+9,
∵FM⊥x轴,垂足为M,交直线AC于P,过点P作PN⊥y轴,
∴∠MPN=90°,
∴MN= = =
∵2<m≤6,
∴当m= 时,MN最小= = .
方法二、∵抛物线解析式为y= x2﹣x+3,
∴B(0,3),C(4,3),
∵A(2,6),
∴直线AC解析式为y=﹣ x+9,
∴G(0,9),H(6,0),
∴GH=3 ,
由题意知,四边形NOMP为矩形,
∴MN=OP,
∴当OP⊥GH时,OP最短,即为MN最短,
∵S△GOH= OGOH= GHOP最小,
∴9×6=3 ×OP最小,
∴OP最小= ,
即:MN最小为
【解析】(1)根据平行四边形的性质和抛物线的特点确定出点D,然而用待定系数法确定出抛物线的解析式.(2)根据AD∥BC∥x轴,且AD,BC间的距离为3,BC,x轴的距离也为3,F(m,6),确定出E( ,3),从而求出梯形的面积.(3)方法一、先求出直线AC解析式,然后根据FM⊥x轴,表示出点P(m,﹣ m+9),最后根据勾股定理求出MN= ,从而确定出MN最小值和m的值.
方法二、由题意知,四边形NOMP为矩形,MN=OP,所以当OP⊥GH时,OP最短,即为MN最短.然后利用三角形等面积法求出OP最小值.
【考点精析】本题主要考查了二次函数的最值的相关知识点,需要掌握如果自变量的取值范围是全体实数,那么函数在顶点处取得最大值(或最小值),即当x=-b/2a时,y最值=(4ac-b2)/4a才能正确解答此题.
科目:初中数学 来源: 题型:
【题目】如图,△ABC的面积为16,点D是BC边上一点,且BD= BC,点G是AB上一点,点B在△ABC内部,且四边形BDHG是平行四边形,则图中阴影部分的面积是 .
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,有下列5个结论:①abc>0;②b>a+c;③9a+3b+c>0; ④c<﹣3a; ⑤a+b≥m(am+b),其中正确的有( )
A.2个
B.3个
C.4个
D.5个
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】中秋佳节我国有赏月和吃月饼的传统,某校数学兴趣小组为了了解本校学生喜爱月饼的情况,随机抽取了60名同学进行问卷调查,经过统计后绘制了两幅尚不完整的统计图.
(注:参与问卷调查的每一位同学在任何一种分类统计中只有一种选择)
请根据统计图完成下列问题:
(1)扇形统计图中,“很喜欢”的部分所对应的圆心角为度; 条形统计图中,喜欢“豆沙”月饼的学生有人;
(2)若该校共有学生900人,请根据上述调查结果,估计该校学生中“很喜欢”和“比较喜欢”月饼的共有人.
(3)甲同学最爱吃云腿月饼,乙同学最爱吃豆沙月饼,现有重量、包装完全一样的云腿、豆沙、莲蓉、蛋黄四种月饼各一个,让甲、乙每人各选一个,请用画树状图法或列表法,求出甲、乙两人中有且只有一人选中自己最爱吃的月饼的概率.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在Rt△ABC中,∠C=90°,以BC为直径的⊙O交斜边AB于点M,若H是AC的中点,连接MH.
(1)求证:MH为⊙O的切线.
(2)若MH= ,tan∠ABC= ,求⊙O的半径.
(3)在(2)的条件下分别过点A、B作⊙O的切线,两切线交于点D,AD与⊙O相切于N点,过N点作NQ⊥BC,垂足为E,且交⊙O于Q点,求线段NQ的长度.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】对于二次函数y=x2﹣2mx﹣3,下列结论错误的是( )
A.它的图象与x轴有两个交点
B.方程x2﹣2mx=3的两根之积为﹣3
C.它的图象的对称轴在y轴的右侧
D.x<m时,y随x的增大而减小
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,四边形ABCD中,AD∥BC,CM是∠BCD的平分线,且CM⊥AB,M为垂足,AM= AB.若四边形ABCD的面积为 ,则四边形AMCD的面积是 .
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,顺次连接腰长为2的等腰直角三角形各边中点得到第1个小三角形,再顺次连接所得的小三角形各边中点得到第2个小三角形,如此操作下去,则第n个小三角形的面积为 .
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com