精英家教网 > 初中数学 > 题目详情

(1)如图1在△ABC中,D为AB上一点,DE∥BC交AC于点E,若AD:DB=2:3,BC=10,求DE的长.
(2)如图2,AB为⊙O的直径,弦CD⊥AB,垂足为点M,连接AC.若∠B=30°,AB=2,求CD的长.

(1)解:∵=
=
∵DE∥BC,
∴△ADE∽△ABC,
==
∵BC=10,
∴DE=4.

(2)解:∵AB为直径,
∴∠ACB=90°,
∵∠B=30°,
∴AC=AB=1,
由勾股定理得:BC==
∵在Rt△ACB中,由面积公式得:×AB×CM=×AC×BC,
∴2×CM=1×
∴CM=
∵CD⊥AB,AB过圆心O,
∴由垂径定理得:CD=2CM=2×=
答:CD的长是
分析:(1)求出AD:AB的值,根据平行线得出△ADE∽△ABC,得出==,代入求出即可.
(2)求出∠ACB=90°,求出AC和BC的长,根据三角形的面积公式求出CM,根据垂径定理求出CD=2CM,代入求出即可.
点评:本题考查了平行线分线段成比例定理、勾股定理、垂径定理、三角形的面积等知识点,主要考查学生运用定理进行推理和计算的能力,题目具有一定的代表性,是一道比较好的题目.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

16、如图,在①AB=AC ②AD=AE ③∠B=∠C ④BD=CE四个条件中,能证明△ABD与△ACE全等的条件顺序是(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

34、已知:如图,在AB、AC上各取一点,E、D,使AE=AD,连接BD,CE,BD与CE交于O,连接AO,∠1=∠2,
求证:∠B=∠C.

查看答案和解析>>

科目:初中数学 来源: 题型:

16、如图,在AB、AC上各取一点D、E,使得AE=AD,连接CD、BE相交于点O,再连接AO.若∠CAO=∠BAO,则图中全等三角形共有(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

18、如图,在AB∥CD,∠A=40°,∠C=80°.求∠E的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在AB、AC上各取一点E、D,使AE=AD,连接BD、CE相交于点O,再连接AO、BC,若∠1=∠2,则图中全等三角形共有(  )

查看答案和解析>>

同步练习册答案