精英家教网 > 初中数学 > 题目详情

【题目】如图是二次函数yax2+bx+ca≠0)图象的一部分,对称轴是直线x=﹣2.关于下列结论:①ab0;②b24ac0;③9a3b+c0;④b4a0;⑤方程ax2+bx0的两个根为x10x2=﹣4,其中正确的结论有(  )

A.2B.3C.4D.5

【答案】C

【解析】

由抛物线的开口方向判断a0的关系,由抛物线与y轴的交点判断c0的关系,然后根据对称轴及抛物线与x轴交点情况进行推理,进而对所得结论进行判断.

解:抛物线开口向下,

a0

b4aab0

b4a0

∴①错误,正确,

抛物线与x轴交于40处两点,

b24ac0,方程ax2+bx0的两个根为x10x24

∴②⑤正确,

x3y0,即9a3b+c0

∴③正确,

故正确的有②③④⑤

故选:C

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图1,在平面直角坐标系中,抛物线yx2+x+3x轴交于AB两点(点A在点B的右侧),与y轴交于点C,过点Cx轴的平行线交抛物线于点P.连接AC

1)求点P的坐标及直线AC的解析式;

2)如图2,过点Px轴的垂线,垂足为E,将线段OE绕点O逆时针旋转得到OF,旋转角为αα90°),连接FAFC.求AF+CF的最小值;

3)如图3,点M为线段OA上一点,以OM为边在第一象限内作正方形OMNG,当正方形OMNG的顶点N恰好落在线段AC上时,将正方形OMNG沿x轴向右平移,记平移中的正方形OMNG为正方形OMNG,当点M与点A重合时停止平移.设平移的距离为t,正方形OMNG的边MNAC交于点R,连接OPORPR,是否存在t的值,使OPR为直角三角形?若存在,求出t的值;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,将ABCD的边DC延长到点E,使CEDC,连接AE,交BC于点F

1)求证:△ABF≌△ECF

2)若∠AFC2D,连接ACBE,求证:四边形ABEC是矩形.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,直线AC与⊙O相切于点A,点B为⊙O上一点,且OCOB于点O,连接ABOC于点D

1)求证:ACCD

2)若AC3OB4,求OD的长度.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某单位800名职工积极参加向贫困地区学校捐书活动,为了解职工的捐书数量,采用随机抽样的方法抽取30名职工的捐书数量作为样本,对他们的捐书数量进行统计,统计结果共有4本、5本、6本、7本、8本五类,分别用ABCDE表示,根据统计数据绘制成了如图所示的不完整的条形统计图,

由图中给出的信息解答下列问题:

1)补全条形统计图;

2)求这30名职工捐书本数的平均数,写出众数和中位数;

3)估计该单位800名职工共捐书多少本?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,抛物线yax2+bx4经过A(﹣30),B5,﹣4)两点,与y轴交于点C,连接ABACBC

1)求抛物线的表达式;

2)求ABC的面积;

3)抛物线的对称轴上是否存在点M,使得ABM是直角三角形?若存在,求出点M的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在平面直角坐标系中,把一条抛物线先向上平移1个单位长度,然后绕原点旋转180°得到抛物线yx2+5x+6.则原抛物线的顶点坐标是(  )

A.B.C.D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在平面直角坐标系中,点O为坐标原点,抛物线yax2+ax+aa≠0)交x轴于点A和点B(点A在点B左边),交y轴于点C,连接ACtanCAO3

1)如图1,求抛物线的解析式;

2)如图2D是第一象限的抛物线上一点,连接DB,将线段DB绕点D顺时针旋转90°,得到线段DE(点B与点E为对应点),点E恰好落在y轴上,求点D的坐标;

3)如图3,在(2)的条件下,过点Dx轴的垂线,垂足为H,点F在第二象限的抛物线上,连接DFy轴于点G,连接GHsinDGH,以DF为边作正方形DFMNPFM上一点,连接PN,将△MPN沿PN翻折得到△TPN(点M与点T为对应点),连接DT并延长与NP的延长线交于点K,连接FK,若FK,求cosKDN的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,将命题“在同圆中,相等的圆心角所对的弧相等,所对的弦也相等”改写成“已知……求证……”的形式,下列正确的是( )

A.已知:在⊙O中,∠AOB=COD,弧AB=CD.求证:AB=CD

B.已知:在⊙O中,∠AOB=COD,弧AB=BC.求证:AD=BC

C.已知:在⊙O中,∠AOB=COD.求证:弧AD=BCAD=BC

D.已知:在⊙O中,∠AOB=COD.求证:弧AB=CDAB=CD

查看答案和解析>>

同步练习册答案