【题目】如图,在平面直角坐标系xOy中,等边△AOB的边长为10,点C在边OA上,点D在边AB上,且OC=3BD.反比例函数y=(k≠0)的图象恰好经过C、D两点,则k的值为_____.
【答案】
【解析】
过点C作CE⊥x轴于点E,过点D作DF⊥x轴于点F,设BD=a,则OC=3a,根据等边三角形的性质结合解含30度角的直角三角形,可得出点C、D的坐标,再利用反比例函数图象上点的坐标特征即可求出a、k的值,此题得解.
解:过点C作CE⊥x轴于点E,过点D作DF⊥x轴于点F,如图所示.
设BD=a,则OC=3a.
∵△AOB为边长为10的等边三角形,
∴∠COE=∠DBF=60°,OB=10.
在Rt△COE中,∠COE=60°,∠CEO=90°,OC=3a,
∴∠OCE=30°,
∴OE=,CE=,
∴点C(,).
同理,可求出点D的坐标为(,).
∵反比例函数y=(k≠0)的图象经过点C和点D,
∴k==,
∴a=2,k=.
故答案为.
科目:初中数学 来源: 题型:
【题目】图1是一种折叠式晾衣架.晾衣时,该晾衣架左右晾衣臂张开后示意图如图2所示,两支脚OC=OD=10分米,展开角∠COD=60°,晾衣臂OA=OB=10分米,晾衣臂支架HG=FE=6分米,且HO=FO=4分米.当∠AOC=90°时,点A离地面的距离AM为_______分米;当OB从水平状态旋转到OB′(在CO延长线上)时,点E绕点F随之旋转至OB′上的点E′处,则B′E′﹣BE为_________分米.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,△ACB中,∠ACB=90°,在AB的同侧分别作正△ACD、正△ABE和正△BCF. 若四边形CDEF的周长是24,面积是17,则AB的长是_______.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图①,在平面直角坐标系中,抛物线y=-x2-x-3交x轴于A、B两点(点A在点B的左侧),交y轴于点C.
(1)求直线AC的解析式;
(2)①点P是直线AC上方抛物线上的一个动点(不与点A、点C重合),过点P作PD⊥AC于点D,求PD的最大值;
②当线段PD的长度最大时,点Q从点P出发,先以每秒1个单位长度的速度沿适当的路径运动到y轴上的点M处,再沿MC以每秒个单位长度的速度运动到点C停止,当点Q在整个运动过程中用时最少时,求点M的坐标;
(3)如图②,将△BOC沿直线BC平移,点B平移后的对应点为点B',点O平移后的对应点为点O',点C平移后的对应点为点C',点S是坐标平面内一点,若以A、C、O'、S为顶点的四边形是菱形,求出所有符合条件的点O'的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,某人在山坡坡脚C处测得一座建筑物定点A的仰角为60°,沿山坡向上走到P处再测得该建筑物顶点A的仰角为45°.已知BC=60m,山坡的坡比为1:2.
(1)求该建筑物的高度(即AB的长,结果保留根号);
(2)求此人所在位置点P的铅直高度(即PD的长,结果保留根号).
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】为了响应国家有关开展中小学生“课后服务”的政策,某学校课后开设了A:课后作业辅导、B:书法、C:阅读、D:绘画、E:器乐,五门课程供学生选择;其中A(必选项目),再从B、C、D、E中选两门课程.
(1)若学生小玲第一次选一门课程,直接写出学生小玲选中项目E的概率;
(2)若学生小强和小明在选项的过程中,第一次都是选了项目E,那么他俩第二次同时选择书法或绘画的概率是多少?请用列表法或画树状图的方法加以说明并列出所有等可能的结果.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,AC是矩形ABCD的对角线,⊙O是△ABC的内切圆,点E是边AD上一点,连结CE,将△CDE绕点C旋转,当CD落到对角线AC上时,点E恰与圆心O重合,已知AE=6,则下列结论不正确的是( )
A. BC+DE=ACB. ⊙O 的半径是2
C. ∠ACB=2∠DCED. AE=CE
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,AB为⊙O的直径,C是⊙O上一点,过点C的直线交AB的延长线于点D,AE⊥DC,垂足为E,F是AE与⊙O的交点,AC平分∠BAE.
(1)求证:DE是⊙O的切线;
(2)若AE=6,∠D=30°,求图中阴影部分的面积.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】甲、乙两人相约周末登花果山,甲、乙两人距地面的高度y(米)与登山时间x(分)之间的函数图象如图所示,根据图象所提供的信息解答下列问题:
(1)甲登山上升的速度是每分钟 米,乙在A地时距地面的高度b为 米;
(2)若乙提速后,乙的登山上升速度是甲登山上升速度的3倍,请求出乙登山全程中,距地面的高度y(米)与登山时间x(分)之间的函数关系式;
(3)登山多长时间时,甲、乙两人距地面的高度差为70米?
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com